Skip to main content

Photovoltaic Materials Design by Computational Studies: Metal Sulfides

  • Chapter
  • First Online:
Solar Cells

Abstract

Materials design for the next generation of solar cell technologies requires an efficient and cost-effective research approach to supplement experimental efforts. Computational research offers a theoretical guide by applying cutting edge methodologies to the study of electronic structures of newly predicted materials. In this chapter, we present our recent research efforts on sulfides. First, we will also provide a brief overview of oxide-based photovoltaic materials. We have conducted a density functional theory (DFT) study of two sulfide systems: acanthite Cu2S and S-doped triclinic CuBiW2O8. With these two systems, we will demonstrate both the cation and anion doping mechanisms. In Cu2S, we investigate the effects of various cation doping in Cu sites, namely Zn, Sn, Bi, Nb, and Ta and contrast their electronic structures with that of a previously studied Ag-doped Cu2S system. A subsequent charge analysis provides a correlation between dopant charge states and detrimental mid-gap trap state concentrations. We then present our best dopant choice for Cu2S-based photovoltaic systems. Finally, for CuBiW2O8, a new experimentally verified DFT-predicted quaternary oxide, the effects of S-anion-doping in O sites are studied, and results indicate favorable photovoltaic properties. This highlights the potential of S-anion-doping as a mechanism for engineering suitable band gaps for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapos V, Hutton J, Harfoot MBJ et al (2018) Present and future biodiversity risks from fossil fuel exploitation. Conserv Lett 11:1–13

    Google Scholar 

  2. P FP (2017) Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148

    Article  Google Scholar 

  3. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M et al (2018) A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers Manag 174:579–614

    Article  CAS  Google Scholar 

  4. U.S. Energy Information Administration (2017). https://www.eia.gov

  5. Office of Energy Efficiency & Renewable Energy (2019). https://www.energy.gov/eere/office-energy-efficiency-renewable-energy

  6. Zeitouny J, Katz EA, Dollet A, Vossier A (2017) Band gap engineering of multi-junction solar cells: effects of series resistances and solar concentration. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  7. Kawasaki H, Konishi K, Adachi D et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032

    Article  CAS  Google Scholar 

  8. Thornton K, Asta M (2005) Current status and outlook of computational materials science education in the US. Model Simul Mater Sci Eng 13:R53–R69

    Article  Google Scholar 

  9. Kalidindi SR, De Graef M (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193

    Article  CAS  Google Scholar 

  10. Jain A, Ong SP, Hautier G et al (2013) Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1:011002

    Article  CAS  Google Scholar 

  11. Hameiri Ziv (2016) Photovoltaics literature survey (No. 125). Prog Photovoltaics Res Appl 24:405–407

    Article  Google Scholar 

  12. Tsuda N, Nasu K, Fujimori A, Siratori K (2000) Electronic conduction in oxides, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  13. Rühle S, Anderson AY, Barad HN et al (2012) All-oxide photovoltaics. J Phys Chem Lett 3:3755–3764

    Article  CAS  Google Scholar 

  14. Chopra KL, Major S, Pandya DK (1983) Transparent conductors—A status review. Thin Solid Films 1:1–46

    Article  Google Scholar 

  15. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44

    Article  CAS  Google Scholar 

  16. Hamelmann FU (2014) Transparent conductive oxides in thin film photovoltaics. J Phys Conf Ser 559:012016

    Article  Google Scholar 

  17. Dixon SC, Scanlon DO, Carmalt CJ, Parkin IP (2016) N-type doped transparent conducting binary oxides: an overview. J Mater Chem C 4:6946–6961

    Article  CAS  Google Scholar 

  18. Edwards PP, Porch A, Jones MO et al (2004) Basic materials physics of transparent conducting oxides. Dalton Trans 2995–3002

    Google Scholar 

  19. Zhang KHL, Xi K, Blamire MG, Egdell RG (2016) P-type transparent conducting oxides. J Phys Condens Matter 28:383002

    Google Scholar 

  20. Hautier G, Miglio A, Ceder G et al (2013) Identification and design principles of low hole effective mass P-type transparent conducting oxides. Nat Commun 4:2292

    Google Scholar 

  21. Huda MN, Al-Jassim MM, Turner JA (2011) Mott insulators: an early selection criterion for materials for photoelectrochemical H2 production. J Renew Sustain Energy 3:053101

    Article  CAS  Google Scholar 

  22. Bhatia A, Hautier G, Nilgianskul T et al (2016) High-mobility bismuth-based transparent P-type oxide from high-throughput material screening. Chem Mater 28:30–34

    Article  CAS  Google Scholar 

  23. Kawazoe H, Yasukawa M, Hyodo H et al (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942.

    Article  CAS  Google Scholar 

  24. Hiramatsu H, Ueda K, Ohta H et al (2003) Degenerate P-type conductivity in wide-gap LaCuOS1-xSex (x = 0-1) epitaxial films. Appl Phys Lett 82:1048

    Article  CAS  Google Scholar 

  25. Hiramatsu H, Ueda K, Ohta H et al (2002) Preparation of transparent P-type (La1-xSrxO) CuS thin films by r.f sputtering technique. Thin Solid Films 411:125–128

    Article  CAS  Google Scholar 

  26. Anderson AY, Bouhadana Y, Barad HN et al (2014) Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu-O compounds in all-oxide device libraries. ACS Comb Sci 16:53–65

    Article  CAS  Google Scholar 

  27. Minami T, Nishi Y, Miyata T (2016) Efficiency enhancement using a Zn1-xGexO thin film as an N-type window layer in Cu2O-based heterojunction solar cells. Appl Phys Express 9:052301

    Google Scholar 

  28. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of P-N junction solar cells. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  29. Dimopoulos T, Peić A, Müllner P et al (2013) Photovoltaic properties of thin film heterojunctions with cupric oxide absorber. J Renew Sustain Energy 5:011205

    Article  CAS  Google Scholar 

  30. Masudy-Panah S, Radhakrishnan K, Tan HR et al (2015) Titanium doped cupric oxide for photovoltaic application. Sol Energy Mater Sol Cells 140:266–274

    Article  CAS  Google Scholar 

  31. Morasch J, Wardenga HF, Jaegermann W, Klein A (2016) Influence of grain boundaries and interfaces on the electronic structure of polycrystalline CuO thin films. Phys Status Solidi Appl Mater Sci 213:1615–1624

    Article  CAS  Google Scholar 

  32. Bhaumik A, Haque A, Karnati P et al (2014) Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 571:126–133

    Article  CAS  Google Scholar 

  33. Repins I, Contreras MA, Egaas B et al (2008) 19.9%-Efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovoltaics Res Appl 16:235–239

    Article  CAS  Google Scholar 

  34. Wang W, Winkler MT, Gunawan O et al (2014) Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater 4:1301465

    Article  CAS  Google Scholar 

  35. Hall RB, Meakin JD (1979) The design and fabrication of high efficiency thin-film CdS/Cu2S solar cells. Thin Solid Films 63:203–211

    Article  CAS  Google Scholar 

  36. Polman A, Knight M, Garnett EC et al (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352(80):aad4424

    Article  CAS  Google Scholar 

  37. Hoffert MI (2010) Climate change. Farewell to fossil fuels? Science 329(80):1292–1294

    Article  CAS  Google Scholar 

  38. Shin D, Saparov B, Mitzi DB (2017) Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater 7:1602366

    Article  CAS  Google Scholar 

  39. Sarker P, Al-Jassim MM, Huda MN (2015) Theoretical limits on the stability of single-phase kesterite-Cu2ZnSnS4. J Appl Phys. 117:035702

    Google Scholar 

  40. Shin D, Saparov B, Zhu T et al (2016) BaCu2Sn (S, Se) 4: earth-abundant chalcogenides for thin-film photovoltaics. Chem Mater 28:4771–4780

    Article  CAS  Google Scholar 

  41. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:1912–1919

    Article  Google Scholar 

  42. Sham LJ, Kohm W (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  43. Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140:18A301

    Article  CAS  Google Scholar 

  44. Burke K (2012) Perspective on density functional theory. J Chem Phys 136:150901

    Article  CAS  Google Scholar 

  45. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  46. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61:689–746

    Article  CAS  Google Scholar 

  47. Jones RO (2015) Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 87:897–923

    Article  Google Scholar 

  48. Bihlmayer G, Dewhurst JK, Van Speybroeck V et al (2016) Reproducibility in density functional theory calculations of solids. Science 351(80):aad3000

    Google Scholar 

  49. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  50. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186

    Article  CAS  Google Scholar 

  52. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  53. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  54. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 59:1758–1775

    Article  CAS  Google Scholar 

  55. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  56. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: hubbard U instead of Stoner I. Phys Rev B 44:943–954

    Google Scholar 

  57. Zhou F, Marianetti CA, Cococcioni M et al (2004) Phase separation in LixFePO4 induced by correlation effects. Phys Rev B Condens Matter Mater Phys 69:1–4

    Google Scholar 

  58. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270

    Article  CAS  Google Scholar 

  59. Dudarev SL, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  60. Barman SK, Huda MN (2018) Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying. J Phys Condens Matter 30:165701

    Article  Google Scholar 

  61. Sarker P, Prasher D, Gaillard N, Huda MN (2013) Predicting a new photocatalyst and its electronic properties by density functional theory. J Appl Phys 114:133508

    Article  CAS  Google Scholar 

  62. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  63. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  64. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for bader charge allocation. J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  65. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matter 21:084204

    CAS  Google Scholar 

  66. Yu M, Trinkle DR (2011) Accurate and efficient algorithm for bader charge integration. J Chem Phys 134:06411

    Article  CAS  Google Scholar 

  67. Evans HT (1979) The crystal structures of low Chalcocite and Djurleite. Zeitschrift für Krist 150:299–320

    Article  CAS  Google Scholar 

  68. Potter RW (1977) An electrochemical investigation of the system Copper-Sulfur. Geol Econ 72:1524–1542

    Article  CAS  Google Scholar 

  69. Will G, Hinze E, Abdelrahman ARM (2002) Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 ºC under controlled sulfur partial pressure. Eur J Miner 14:591–598

    Article  CAS  Google Scholar 

  70. Koto K, Morimoto N (1970) The crystal structure of anilite. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 26:915–924. https://doi.org/10.1107/S0567740870003370

    Article  CAS  Google Scholar 

  71. Wang L-W (2012) High chalcocite Cu2S: a solid–liquid hybrid phase. Phys Rev Lett 108:085703

    Article  CAS  Google Scholar 

  72. Bragagnolo JA, Barnett AM, Phillips JE et al (1980) The design and fabrication of thin-film CdS/Cu2S cells of 9.15% conversion efficiency. IEEE Trans Electron Devices 27:645–651

    Article  Google Scholar 

  73. Lukashev P, Lambrecht WRL, Kotani T, van Schilfgaarde M (2007) Electronic and Crystal Structure of Cu2S: full-potential electronic structure calculations. Phys Rev B 76:195202

    Article  CAS  Google Scholar 

  74. Xu Q, Huang B, Zhao Y et al (2012) Crystal and electronic structures of CuxS solar cell absorbers. Appl Phys Lett 100:061906

    Article  CAS  Google Scholar 

  75. Matsumoto Hitoshi, Nakayama Nobuo, Kazufumi Yamaguchi SI (1977) Improvement of stability in CdS–Cu2S ceramic solar cells. Jpn J Appl Phys 16:1283–1284

    Article  CAS  Google Scholar 

  76. Aldhafiri AM, Russell GJ, Woods J (1992) Degradation in Cds-Cu2S photovoltaic cells. Semicond Sci Technol 7:1052–1057

    Google Scholar 

  77. Khatri P, Huda MN (2015) Prediction of a new phase of CuxS near Stoichiometric composition. Int J Photoenergy 2015:1–8

    Article  CAS  Google Scholar 

  78. Savory CN, Ganose AM, Travis W et al (2016) An assessment of silver copper sulfides for photovoltaic applications: theoretical and experimental insights. J Mater Chem A 4:12648–12657

    Article  CAS  Google Scholar 

  79. Riha SC, Jin S, Baryshev SV et al (2013) Stabilizing Cu2S for photovoltaics one atomic layer at a time. ACS Appl Mater Interfaces 5:10302–10309

    Article  CAS  Google Scholar 

  80. Barman SK, Huda MN First principle study of the stability, electronic and optical properties of Sn doped Acanthite Cu2S. (To be published)

    Google Scholar 

  81. Saito N, Kadowaki H, Kobayashi H et al (2004) A new photocatalyst of RuO2-loaded PbWO4 for overall splitting of water. Chem Lett 33:1452–1453

    Google Scholar 

  82. Kadowaki H, Saito N, Nishiyama H et al (2007) Overall splitting of water by RuO2-loaded PbWO4 photocatalyst with d10s2-d0 configuration. J Phys Chem C 111:439–444

    Google Scholar 

  83. Krüger TF, Müller-Buschbaum H (1992) Ein mit β-CuNdW2O8 und β-LiYbW2O8 verwandtes Kupfer-Wismut-Oxowol-framats: CuBiW2O8. J Alloys Compd 190:L1–L3

    Google Scholar 

  84. Zhou L, Giri B, Masroor M, Bainglass E, Li G, Alexander Carl A, Grimm RL, Huda MN, Titova LV, Rao PM (2019) Synthesis and optoelectronic poperties of a promising quaternary metal oxide light absorber CuBiW2O8 (To be submitted)

    Google Scholar 

  85. Abdi FF, Savenije TJ, May MM et al (2013) The origin of slow carrier transport in BiVO4 thin-film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4:2752–2757

    Article  CAS  Google Scholar 

  86. Curtarolo S, Setyawan W, Hart GLW et al (2012) AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci 58:218–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All computations were performed on Texas Advanced Computing Center (TACC) servers. We acknowledge Dr. Pranab Sarker for the discovery of the new triclinic ground state of CBTO. This work was partially funded by NSF grant# 1609811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad N. Huda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bainglass, E., Barman, S.K., Huda, M.N. (2020). Photovoltaic Materials Design by Computational Studies: Metal Sulfides. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_5

Download citation

Publish with us

Policies and ethics