Skip to main content

Materials for Solar Cell Applications: An Overview of TiO2, ZnO, Upconverting Organic and Polymer-Based Solar Cells

  • Chapter
  • First Online:
Book cover Solar Cells

Abstract

The present chapter gives an overview of third-generation solar cells with special emphasize on important synthesis protocol for ZnO, TiO2, and rare earth-based upconverting materials for their utilization in the field of solar cells. Moreover, we have discussed working principle and basic requirements for organic-based solar cells, which is in major focus of research worldwide. This is booming research field and has enormous scope to serve humankind to combat energy scarcity and futuristic application for harvesting the solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735. https://doi.org/10.1073/pnas.0603395103

    Article  CAS  Google Scholar 

  2. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957. https://doi.org/10.1039/b506923h

    Article  CAS  Google Scholar 

  3. Global Trends in Renewable Energy Investment 2018 Frankfurt School-UNEP Centre/BNEF (2018) Global trends in renewable energy investment 2018. http://www.fs-unep-centre.org (Frankfurt am Main), n.d. http://www.fs-unep-centre.org. Accessed 6 July 2019

  4. Conibeer G (2007) Third-generation photovoltaics. Mater Today 10:42–50. https://doi.org/10.1016/S1369-7021(07)70278-X

    Article  CAS  Google Scholar 

  5. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science (80-.) 352:aad4424–aad4424. https://doi.org/10.1126/science.aad4424

    Article  Google Scholar 

  6. Futscher MH, Ehrler B (2016) Efficiency limit of Perovskite/Si tandem solar cells. ACS Energy Lett 1:863–868. https://doi.org/10.1021/acsenergylett.6b00405

    Article  CAS  Google Scholar 

  7. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153. https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  8. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897. https://doi.org/10.1039/C5CC06759F

    Article  CAS  Google Scholar 

  9. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  10. Yang WS, Park B-W, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Il Seok S (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379. https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  11. Di Giacomo F, Fakharuddin A, Jose R, Brown TM (2016) Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ Sci 9:3007–3035. https://doi.org/10.1039/C6EE01137C

    Article  Google Scholar 

  12. Zhang W, Ren Z, Guo Y, He X, Li X (2018) Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim Acta 268:539–545. https://doi.org/10.1016/J.ELECTACTA.2018.02.103

    Article  CAS  Google Scholar 

  13. Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ (2013) Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun 4:2885. https://doi.org/10.1038/ncomms3885

    Article  CAS  Google Scholar 

  14. Chen X, Cui Y, Yan X, Tian L, Chen X (2016) Synthesis and properties of hydrogenated black TiO2 nanomaterials, black TiO2 nanomater. Energy Appl 5–32. https://doi.org/10.1142/9781786341662_0002

    Google Scholar 

  15. Wu T, Kang S-Z, Mu J, Li X (2010) Effect of montmorillonite on the photocatalytic activity of TiO2 nanoparticles. Desalination 262:147–151. https://doi.org/10.1016/j.desal.2010.06.003

    Article  CAS  Google Scholar 

  16. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  17. Do Kim K, Kim HT (2001) Synthesis of TiO2 nanoparticles by hydrolysis of TEOT and decrease of particle size using a two-stage mixed method. Powder Technol 119:164–172. https://doi.org/10.1016/s0032-5910(00)00420-4

    Article  CAS  Google Scholar 

  18. Chemseddine A, Moritz T (1999) Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. Eur J Inorg Chem 1999:235–245. https://doi.org/10.1002/(SICI)1099-0682(19990202)1999:2%3c235:AID-EJIC235%3e3.0.CO;2-N

    Article  Google Scholar 

  19. Li Y, White T, Lim S (2004) Low-temperature synthesis and microstructural control of titania nano-particles. J Solid State Chem 177:1372–1381. https://doi.org/10.1016/j.jssc.2003.11.016

    Article  CAS  Google Scholar 

  20. Li GL, Wang GH (1999) Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostruct Mater 11:663–668. https://doi.org/10.1016/S0965-9773(99)00354-2

    Article  CAS  Google Scholar 

  21. Andersson M, Österlund L, Ljungström S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679. https://doi.org/10.1021/jp025715y

    Article  CAS  Google Scholar 

  22. Armstrong AR, Armstrong G, Canales J, García R, Bruce PG (2005) Lithium-Ion intercalation into TiO2-B nanowires. Adv Mater 17:862–865. https://doi.org/10.1002/adma.200400795

    Article  CAS  Google Scholar 

  23. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  24. McEnvoy AJ, Grätzel M (1994) Sensitization in photochemistry and photovoltaics. Sol Energy Mater Sol Cells 33:255. https://doi.org/10.1016/0927-0248(94)90213-5

    Article  Google Scholar 

  25. Devine J (1993) Applications of ultrasound. Tech Text Int: 14–17. https://doi.org/10.1146/annurev.matsci.29.1.295

    Article  CAS  Google Scholar 

  26. Yu JC, Yu J, Ho W, Zhang L (2001) Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun: 1942–1943. https://doi.org/10.1039/b105471f

  27. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895. https://doi.org/10.1021/cm9803859

    Article  CAS  Google Scholar 

  28. Osepchuk JM (1984) A history of microwave heating applications. IEEE Trans Microw Theor Tech 32:1200–1224. https://doi.org/10.1109/TMTT.1984.1132831

    Article  Google Scholar 

  29. Corradi AB, Bondioli F, Focher B, Ferrari AM, Grippo C, Mariani E, Villa C (2005) Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J Am Ceram Soc 88:2639–2641. https://doi.org/10.1111/j.1551-2916.2005.00474.x

    Article  CAS  Google Scholar 

  30. Shao S, Zheng K, Zidek K, Chabera P, Pullerits T, Zhang F (2013) Optimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells. Sol Energy Mater Sol Cells 118:43–47. https://doi.org/10.1016/j.solmat.2013.07.046

    Article  CAS  Google Scholar 

  31. Venkataprasad Bhat S, Govindaraj A, Rao CNR (2011) Hybrid solar cell based on P3HT-ZnO nanoparticle blend in the inverted device configuration Sol Energy Mater Sol Cells 95:2318–2321. https://doi.org/10.1016/j.solmat.2011.03.047

    Article  CAS  Google Scholar 

  32. Cheng XL, Zhao H, Huo LH, Gao S, Zhao JG (2004) ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens Actuators B Chem 102:248–252. https://doi.org/10.1016/j.snb.2004.04.080

    Article  CAS  Google Scholar 

  33. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33. https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  CAS  Google Scholar 

  34. Hames Y, Alpaslan Z, Kösemen A, San SE, Yerli Y (2010) Electrochemically grown ZnO nanorods for hybrid solar cell applications. Sol Energy 84:426–431. https://doi.org/10.1016/j.solener.2009.12.013

    Article  CAS  Google Scholar 

  35. Sharma P, Rao KV, Ahuja R, Gupta A, Gehring GA, Owens FJ, Sharma R, Johansson B, Guillen JMO (2003) Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater 2:673–677. https://doi.org/10.1038/nmat984

    Article  CAS  Google Scholar 

  36. Jun W, Changsheng X, Zikui B, Bailin Z, Kaijin H, Run W (2002) Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders. Mater Sci Eng, B 95:157–161. https://doi.org/10.1016/S0921-5107(02)00227-1

    Article  Google Scholar 

  37. Sharma P, Sreenivas K, Rao KV (2003) Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. J Appl Phys 93:3963–3970. https://doi.org/10.1063/1.1558994

    Article  CAS  Google Scholar 

  38. Sahdan MZ, Mamat MH, Amizam S, Rafaie HA, Khusaimi Z, Noor UM, Rusop M, Rusop M, Soga T (2009) Synthesis of ZnO nanowires on ZnO microsheets grown on gold catalyst. In: AIP conference proceedings, AIP, pp 545–549. https://doi.org/10.1063/1.3160203

  39. Zhou Y, Eck M, Kruger M (2011) Organic-inorganic hybrid solar cells: state of the art, challenges and perspectives. In: Solar cells-new aspects and solutions, InTech. https://doi.org/10.5772/19732

    Google Scholar 

  40. Qiu R, Zhang D, Mo Y, Song L, Brewer E, Huang X, Xiong Y (2008) Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater 156:80–85. https://doi.org/10.1016/j.jhazmat.2007.11.114

    Article  CAS  Google Scholar 

  41. Madhusudhana N, Yogendra K, Mahadevan KM, Naik S (2011) Photocatalytic degradation of Coralene Dark Red 2B azo dye using calcium zincate nanoparticle in presence of natural sunlight: an aid to environmental remediation. Int J Chem Eng Appl: 294–298. https://doi.org/10.7763/ijcea.2011.v2.120

  42. Look DC, Hemsky JW, Sizelove JR (1999) Residual native shallow donor in ZnO. Phys Rev Lett 82:2552–2555. https://doi.org/10.1103/PhysRevLett.82.2552

    Article  CAS  Google Scholar 

  43. Gabás M, Díaz-Carrasco P, Agulló-Rueda F, Herrero P, Landa-Cánovas AR, Ramos-Barrado JR (2011) High quality ZnO and Ga:ZnO thin films grown onto crystalline Si (100) by RF magnetron sputtering. Sol Energy Mater Sol Cells 95:2327–2334. https://doi.org/10.1016/j.solmat.2011.04.001

    Article  CAS  Google Scholar 

  44. de la Olvera ML, Maldonado A, Asomoza R, Meléndez-Lira M (2002) Effect of the substrate temperature and acidity of the spray solution on the physical properties of F-doped ZnO thin films deposited by chemical spray. Sol Energy Mater Sol Cells 71:61–71. https://doi.org/10.1016/s0927-0248(01)00044-7

    Article  CAS  Google Scholar 

  45. Alias SS, Ismail AB, Mohamad AA (2010) Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J Alloys Compd 499:231–237. https://doi.org/10.1016/j.jallcom.2010.03.174

    Article  CAS  Google Scholar 

  46. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2013) Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J Ind Eng Chem 19:99–105. https://doi.org/10.1016/j.jiec.2012.07.010

    Article  CAS  Google Scholar 

  47. Huang MH (2001) Room-temperature ultraviolet nanowire nanolasers. Science (80-.) 292:1897–1899. https://doi.org/10.1126/science.1060367

    Article  CAS  Google Scholar 

  48. Kato H, Sano M, Miyamoto K, Yao T (2002) Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. J Cryst Growth 237–239:538–543. https://doi.org/10.1016/S0022-0248(01)01972-8

    Article  Google Scholar 

  49. Yap CK, Tan WC, Alias SS, Mohamad AA (2009) Synthesis of zinc oxide by zinc–air system. J Alloys Compd 484:934–938. https://doi.org/10.1016/j.jallcom.2009.05.073

    Article  CAS  Google Scholar 

  50. Chen P-R, Ji Y-Z, Yang Q (2013) Preparation of composite additives powder by coprecipitation method and investigation of ZnO varistor ceramics. J Inorg Mater 27:1277–1282. https://doi.org/10.3724/SP.J.1077.2012.12105

    Article  CAS  Google Scholar 

  51. Kumar H, Rani R (2013) Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int Lett Chem Phys Astron 19:26–36. https://doi.org/10.18052/www.scipress.com/ILCPA.19.26

    Article  Google Scholar 

  52. Utlu G (2019) Structural investigation of ZnO thin films obtained by annealing after thermal evaporation. Sak Univ J Sci I: 1–1. https://doi.org/10.16984/saufenbilder.450190

  53. Hasanpoor M, Aliofkhazraei M, Delavari H (2015) Microwave-assisted synthesis of zinc oxide nanoparticles. Proc Mater Sci 11:320–325. https://doi.org/10.1016/j.mspro.2015.11.101

    Article  CAS  Google Scholar 

  54. Park JY, Lee DJ, Kim SS (2005) Size control of ZnO nanorod arrays grown by metalorganic chemical vapour deposition. Nanotechnology 16:2044–2047. https://doi.org/10.1088/0957-4484/16/10/010

    Article  CAS  Google Scholar 

  55. Tien LC, Norton DP, Pearton SJ, Wang H-T, Ren F (2007) Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Appl Surf Sci 253:4620–4625. https://doi.org/10.1016/j.apsusc.2006.10.012

    Article  CAS  Google Scholar 

  56. Šarić A, Štefanić G, Dražić G, Gotić M (2015) Solvothermal synthesis of zinc oxide microspheres. J Alloys Compd 652:91–99. https://doi.org/10.1016/j.jallcom.2015.08.200

    Article  CAS  Google Scholar 

  57. Ghosh S, Majumder D, Sen A, Roy S (2014) Facile sonochemical synthesis of zinc oxide nanoflakes at room temperature. Mater Lett 130:215–217. https://doi.org/10.1016/j.matlet.2014.05.112

    Article  CAS  Google Scholar 

  58. Zhou H, Fallert J, Sartor J, Dietz RJB, Klingshirn C, Kalt H, Weissenberger D, Gerthsen D, Zeng H, Cai W (2008) Ordered n-type ZnO nanorod arrays. Appl Phys Lett 92:132112. https://doi.org/10.1063/1.2907197

    Article  CAS  Google Scholar 

  59. Samanta PK, Mishra S (2013) Wet chemical growth and optical property of ZnO nanodiscs. Opt Int J Light Electron Opt 124:2871–2873. https://doi.org/10.1016/j.ijleo.2012.08.066

    Article  CAS  Google Scholar 

  60. Yang J, Qiu Y, Yang S (2007) Studies of electrochemical synthesis of ultrathin ZnO nanorod/nanobelt arrays on Zn substrates in alkaline solutions of amine − alcohol mixtures. Cryst Growth Des 7:2562–2567. https://doi.org/10.1021/cg070513i

    Article  CAS  Google Scholar 

  61. Boukos N, Chandrinou C, Travlos A (2012) Zinc vacancies and interstitials in ZnO nanorods. Thin Solid Films 520:4654–4657. https://doi.org/10.1016/j.tsf.2011.10.138

    Article  CAS  Google Scholar 

  62. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551. https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  63. General Properties of ZnO. In: Zinc Oxide, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, n.d., pp 1–76. https://doi.org/10.1002/9783527623945.ch1

  64. Özgür Ü, Avrutin V, Morkoç H (2013) Zinc oxide materials and devices grown by MBE. In: Mol. Beam Ep., Elsevier, pp 369–416. https://doi.org/10.1016/b978-0-12-387839-7.00016-6

    Chapter  Google Scholar 

  65. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chemie Int Ed 46:1222–1244. https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  66. Rezaei M, Habibi-Yangjeh A (2013) Simple and large scale refluxing method for preparation of Ce-doped ZnO nanostructures as highly efficient photocatalyst. Appl Surf Sci 265:591–596. https://doi.org/10.1016/j.apsusc.2012.11.053

    Article  CAS  Google Scholar 

  67. Huang Y, Wei Y, Wu J, Guo C, Wang M, Yin S, Sato T (2012) Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2 − xNy coupled photocatalysts. Appl Catal B Environ 123–124:9–17. https://doi.org/10.1016/j.apcatb.2012.04.010

    Article  CAS  Google Scholar 

  68. Gao R, Qiu Y, Ma B, Zhu Y, Shi Y, Wang L, Zhan C (2010) Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dye-sensitized solar cells. Adv Funct Mater 20:437–444. https://doi.org/10.1002/adfm.200901318

    Article  CAS  Google Scholar 

  69. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chemie Int Ed 47:2402–2406. https://doi.org/10.1002/anie.200704919

    Article  CAS  Google Scholar 

  70. Bünzli JG, Choppin GR (1990) Lanthanide probes in life, chemical and earth sciences theory and practice. Spectrochim Acta Part A Mol Spectrosc 46:1797. https://doi.org/10.1016/0584-8539(90)80252-T

    Article  Google Scholar 

  71. Atwood D (2013) The rare earth elements. Fundamentals and applications

    Google Scholar 

  72. Cotton S (2006) Lanthanide and actinide chemistry. https://doi.org/10.1002/0470010088

    Book  Google Scholar 

  73. Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077. https://doi.org/10.1039/b406082m

    Article  CAS  Google Scholar 

  74. Blasse G, Grabmaier BC (n.d.) Luminescent materials

    Google Scholar 

  75. Lucas J, Lucas P, Le Mercier T, Rollat A, Davenport W (2015) Rare earth electronic structures and trends in properties. Rare Earths: 123–139. https://doi.org/10.1016/b978-0-444-62735-3.00008-5

    Chapter  Google Scholar 

  76. Gaft M, Reisfeld R, Panczer G (2005) Luminescence spectroscopy of minerals and materials. Springer, Berlin. https://doi.org/10.1007/b137490

  77. Hanioka M, Arimoto S, Samata H (2018) Up- and down-conversion characteristics of Gd1.98−xYbxEr0.02O3. Opt Int J Light Electron Opt 154:226–233. https://doi.org/10.1016/j.ijleo.2017.10.029

    Article  CAS  Google Scholar 

  78. Shan G-B, Demopoulos GP (2010) Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv Mater 22:4373–4377. https://doi.org/10.1002/adma.201001816

    Article  CAS  Google Scholar 

  79. Shan G-B, Assaaoudi H, Demopoulos GP (2011) Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF4:Er3+/Yb3+ nanoplatelets. ACS Appl Mater Interfaces 3:3239–3243. https://doi.org/10.1021/am200537e

    Article  CAS  Google Scholar 

  80. Talewar RA, Gaikwad VM, Tawalare PK, Moharil SV (2019) Sensitization of Er3+/Ho3+ visible and NIR emission in NaY(MoO4)2 phosphors. Opt Laser Technol 115:215–221. https://doi.org/10.1016/j.optlastec.2019.02.016

    Article  CAS  Google Scholar 

  81. Zhang H, Lv X, Li R, Zhang M, Guo M (2019) Titanium mesh-supported “TiO2 nanowire arrays/Yb-Er-F tri-doped TiO2 up-conversion nanoparticles” composite structure: designation for high efficient flexible dye-sensitized solar cells. Thin Solid Films 681:103–113. https://doi.org/10.1016/j.tsf.2019.02.011

    Article  CAS  Google Scholar 

  82. Smet PF, Van Den Eeckhout K, De Clercq OQ, Poelman D (2015) Persistent phosphors, 1st edn. Elsevier B.V. https://doi.org/10.1016/b978-0-444-63483-2.00001-6

    Google Scholar 

  83. Lucas J, Lucas P, Le Mercier T, Rollat A, Davenport W (2015) Applications of rare earth luminescent materials. In: Rare Earths. Elsevier, pp 281–318. https://doi.org/10.1016/b978-0-444-62735-3.00015-2

    Chapter  Google Scholar 

  84. Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater 13:418–426. https://doi.org/10.1038/nmat3908

    Article  CAS  Google Scholar 

  85. Wiatrowska A, Zych E (2013) Traps formation and characterization in long-term energy storing Lu2O3:Pr, Hf luminescent ceramics. J Phys Chem C 117:11449–11458. https://doi.org/10.1021/jp312123e

    Article  CAS  Google Scholar 

  86. Bouras K, Schmerber G, Rinnert H, Aureau D, Park H, Ferblantier G, Colis S, Fix T, Park C, Kim WK, Dinia A, Slaoui A (2016) Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Sol Energy Mater Sol Cells 145:134–141. https://doi.org/10.1016/j.solmat.2015.07.038

    Article  CAS  Google Scholar 

  87. Marzouk MA, Abdel-Hameed SAM (2019) Crystallization and photoluminescent properties of Eu, Gd, Sm, Nd co-doped SrAl2B2O7 nanocrystals phosphors prepared by glass-ceramic technique. J Lumin 205:248–257. https://doi.org/10.1016/j.jlumin.2018.09.019

    Article  CAS  Google Scholar 

  88. Yang Y, Bao A, Lai H, Tao Y, Yang H (2009) Luminescent properties of SrAl2B2O7: Ce3+, Tb3+. J Phys Chem Solids 70:1317–1321. https://doi.org/10.1016/j.jpcs.2009.06.012

    Article  CAS  Google Scholar 

  89. Yao L, Chen G, Yang T, Yuan C, Zhou C (2017) Energy transfer, optical and luminescent properties in Tm3+/Tb3+/Sm3+ tri-doped borate glasses. J Mater Sci: Mater Electron 28:553–558. https://doi.org/10.1007/s10854-016-5558-2

    Article  CAS  Google Scholar 

  90. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42. https://doi.org/10.1039/c2cs35288e

    Article  CAS  Google Scholar 

  91. Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009–20029. https://doi.org/10.1021/ja2073643

    Article  CAS  Google Scholar 

  92. Li W, Furlan A, Roelofs WSC, Hendriks KH, van Pruissen GWP, Wienk MM, Janssen RAJ (2014) Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells. Chem Commun 50:679–681. https://doi.org/10.1039/C3CC47868H

    Article  CAS  Google Scholar 

  93. Molander GA, Ellis N (2007) Organotrifluoroborates: protected boronic acids that expand the versatility of the Suzuki coupling reaction. https://doi.org/10.1021/ar050199q

    Article  CAS  Google Scholar 

  94. Suzuki A (1999) Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet Chem 576:147–168. https://doi.org/10.1016/S0022-328X(98)01055-9

    Article  CAS  Google Scholar 

  95. Suzuki A, Miyaura N (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483. https://doi.org/10.1021/cr00039a007

    Article  Google Scholar 

  96. Boyer IJ (1989) Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals. Toxicology 55:253–298. https://doi.org/10.1016/0300-483X(89)90018-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, N., Barbosa, H., Ali, K., Sharma, S.K. (2020). Materials for Solar Cell Applications: An Overview of TiO2, ZnO, Upconverting Organic and Polymer-Based Solar Cells. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_3

Download citation

Publish with us

Policies and ethics