Skip to main content

Synthesis and Processing of Nanomaterials

  • Chapter
  • First Online:
Book cover Solar Cells

Abstract

Nanomaterials have emerged as a distinct class of modern materials. These materials are of significant importance due to their unique optical, electrical, thermal, and magnetic properties. Due to their tunable physical and chemical characteristics, including melting point, electrical conductivity, wettability, heat conductivity, light absorption, catalytic activity, and scattering, these materials have also gained recognition in high-tech engineering applications. These characteristics reflect better performance and working efficiency of nanomaterials relative to their bulk counterparts. Although there are many naturally occurring nanomaterials, most nanomaterials are engineered in laboratories. Such materials are purposefully synthesized in accordance with the industrial requirements. This chapter deals with the fundamentals of nanomaterials, their history, properties, and industrial applications. Different methods of synthesis of nanomaterials, their merits, demerits, and scale-up potential are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dehradun P (2015) A review on nanoparticles—preparation and evaluation parameters. Indian J Pharm Biol Res 4(2):27–31

    Google Scholar 

  2. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  Google Scholar 

  3. Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343

    Article  CAS  Google Scholar 

  4. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Lyon DY, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  5. Kabir E, Kim K, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manage 225:261–271

    Article  CAS  Google Scholar 

  6. Buzea C, Blandino IIP, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity 2(4):1–103

    Google Scholar 

  7. Singh M, Manikandan S, Kumaraguru AK (2011) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1(1):1–11

    Article  CAS  Google Scholar 

  8. Fadel TR, Farrell DF, Friedersdorf LE, Griep MH, Hoover MD, Meador MA, Meyyappan M (2016) Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens 1(3):207–216

    Article  CAS  Google Scholar 

  9. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(6):228–234

    Google Scholar 

  10. Hahn H (2003) Unique features and properties of nanostructured materials. Adv Eng Mater 5(5):277–284

    Article  CAS  Google Scholar 

  11. Wang X, Li Y (2006) Solution based synthetic strategies for 1D nanostructures. Inorg Chem 45:7522–7534

    Article  CAS  Google Scholar 

  12. Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    Article  CAS  Google Scholar 

  13. Lue JT (2007) Physical properties of nanomaterials. Encycl Nanosci Nanotechnol 10(1):1–46

    Google Scholar 

  14. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469

    Article  CAS  Google Scholar 

  15. Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (2014) Handbook of nanomaterials properties. Springer Heidelberg New York Dordrecht London, Springer

    Google Scholar 

  16. Sonia MML, Blessi S, Pauline S (2014) Role of lanthanum substitution on the structural and magnetic properties of nanocrystalline nickel ferrites. Int J Adv Res Sci Eng 3(7):360–367

    Google Scholar 

  17. Tamgadge YS, Muley GG, Deshmukh KU, Pahurkar VG (2018) Synthesis and nonlinear optical properties of Zn doped TiO2 nano-colloids. Opt Mater 86:185–190

    Article  CAS  Google Scholar 

  18. Arole VM, Munde SV (2014) Fabrication of nanomaterials by top-down and bottom-up approaches—an overview. JAAST: Mater Sci 1(2):89–93

    Google Scholar 

  19. Hu EL, Shaw DT (1999) Synthesis and assembly, nanostructure science and technology. Springer Publisher, New York, pp 15–33

    Google Scholar 

  20. Kumar A, Yadav N, Bhatt M, Mishra NK, Chaudhary P, Singh R (2015) Sol-gel derived nanomaterials and it’s applications: a review. Res J Chem Sci 5(12):98–105

    Google Scholar 

  21. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  22. Majidi S, Sehrig FZ, Farkhani SM, Goloujeh MS, Akbarzadeh A (2016) Current methods for synthesis of magnetic nanoparticles. Artif Cells, Nanomedicine, Biotechnol 44(2):722–734

    Article  CAS  Google Scholar 

  23. Uche DOV (2013) Sol-gel technique: a veritable tool for crystal growth. Adv Appl Sci Res 4(1):506–510

    CAS  Google Scholar 

  24. Mishra V, Sharma R, Jasuja ND (2014) A review on green synthesis of nanoparticles and evaluation of antimicrobial activity. Int J Green Herb Chem 3(1):081–094

    Google Scholar 

  25. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application Green synthesis of nanoparticles and its potential application. Biotech Lett 38(4):545–560

    Article  CAS  Google Scholar 

  26. Motshekga SC, Pillai SK, Ray SS, Jalama K, Krause RWM (2012) Recent trends in the microwave-assisted synthesis of metal oxide nanoparticles supported on carbon nanotubes and their applications. J Nanomater, vol 2012, Article ID 691503, pp 1–15

    Article  CAS  Google Scholar 

  27. Zhu Y, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114(12):6462–6555

    Article  CAS  Google Scholar 

  28. Szabó DV, Schlabach S (2014) Microwave plasma synthesis of materials—from physics and chemistry to nanoparticles: a materials scientist’s viewpoint. Inorganics 2(3):468–507

    Article  CAS  Google Scholar 

  29. Horikoshi S, Serpone N (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. Wiley-VCH, New York

    Book  Google Scholar 

  30. Kortshagen UR, Sankaran RM, Pereira RN, Girshick SL, Wu JJ, Aydil ES (2016) Nonthermal plasma synthesis of nanocrystals: fundamental principles, materials, and applications. Chem Rev 116(18):11061–11127

    Article  CAS  Google Scholar 

  31. Saito G, Akiyama T (2015) Nanomaterial synthesis using plasma generation in liquid. J Nanomater 4(2)

    Google Scholar 

  32. Ostrikov KK, Cvelbar U, Murphy AB (2011) Plasma nanoscience: setting directions, tackling grand challenges. J Phys D: Appl Phys 44(17):174001

    Article  CAS  Google Scholar 

  33. Biehl P, Lühe M, Dutz S, Schacher F (2018) Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers 10(1):91

    Article  CAS  Google Scholar 

  34. Aruna ST, Mukasyan AS (2008) Current opinion in solid state and materials science 12(3–4):44–50

    Google Scholar 

  35. Tyagi S, Pandey VK (2016) Nanomaterials: an overview of preparation. Res Rev: J Pharm Nanotechnol Nanoparticles 4(2):1–12

    CAS  Google Scholar 

  36. Wu H, Li Q (2012) Application of mechanochemical synthesis of advanced materials. J Adv Ceram 1(2):130–137

    Article  CAS  Google Scholar 

  37. Shukla SK Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yasin Naz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naz, M.Y., Shukrullah, S., Ghaffar, A., Ali, K., Sharma, S.K. (2020). Synthesis and Processing of Nanomaterials. In: Sharma, S., Ali, K. (eds) Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-030-36354-3_1

Download citation

Publish with us

Policies and ethics