Skip to main content

Programming: General Aspects

  • Chapter
  • First Online:
Fundamentals and Clinics of Deep Brain Stimulation

Abstract

Over the past two decades, a great deal has been learned about how the brain responses to the individual deep brain stimulation (DBS) pulse, although which of those underlie benefit or adverse effects is unclear. It is now generally known that the primary effect is generating action potentials in axons in the vicinity of the DBS cathode (negative contact). The DBS pulse does so by depolarizing the cell membrane of the neuronal axon to initiate openings of voltage-gated ionic conductance channels, primarily on the axons.

The electronics of the DBS systems, current (voltage in the case of constant voltage stimulation), pulse width, and neuronal biophysics can be leveraged to optimize DBS programming. The primary responses to the DBS pulse initiate cascades of effects that percolate throughout the system, both antidromically and orthodromically. These are referred to as secondary effects and likely are critical for the clinical benefit. In some cases, the percolating effects produce recurrent effects creating oscillatory activities and interactions among them. Whereas the current and pulse width are critical to the primary effects, it is likely that the DBS frequency is critical to the secondary effects. Thus, frequency must be considered as a separate control parameter relatively independent of the current and pulse width and thus, the total electrical energy delivered (TEED) is not an appropriate consideration.

Effective and efficient DBS programming has to be considered in its widest ecology. Programming is not just a matter of adjusting current, pulse width, frequency, and the pattern of active contacts. Indeed, in disorders such as Parkinson’s disease, the synergies between DBS and other treatments have to be managed. The tools required include not only the DBS programming device, but also tools to assess the DBS effects, particularly in the context of complicating factors and the logistical constraints of the DBS programming session. Yet, there is considerable evidence that proper DBS programming can make a dramatic change in the lives of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, Silchenko A, Volkmann J, Deuschl G, Meissner WG, Maarouf M, Sturm V, Freund HJ, Tass PA. Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov Disord. 2014;29(13):1679–84. https://doi.org/10.1002/mds.25923. Epub 2014 Jun 28. PubMed PMID: 24976001; PubMed Central PMCID: PMC4282372)

    Article  PubMed  PubMed Central  Google Scholar 

  • Albanese A, Sorbo FD, Comella C, et al. Dystonia rating scales: critique and recommendations. Mov Disord. 2013;28(7):874–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alterman RL, Miravite J, Weisz D, Shils JL, Bressman SB, Tagliati M. Sixty Hertz pallidal deep brain stimulation for primary torsion dystonia. Neurology. 2007;69(7):681–8.

    Article  CAS  PubMed  Google Scholar 

  • Amon A, Alesch F. Systems for deep brain stimulation: review of technical features. J Neural Transm (Vienna). 2017;124(9):1083–91.

    Article  CAS  Google Scholar 

  • Arlotti M, Rosa M, Marceglia S, Barbieri S, Priori A. The adaptive deep brain stimulation challenge. Parkinsonism Relat Disord. 2016;28:12–7.

    Article  PubMed  Google Scholar 

  • Baker KB, Montgomery EB Jr, Rezai AR, Burgess R, Lüders HO. Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Mov Disord. 2002;17(5):969–83. PubMed PMID: 12360546

    Article  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–6.

    CAS  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.

    Article  CAS  PubMed  Google Scholar 

  • Beudel M, Cagnan H, Little S. Adaptive brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:230–42.

    Article  PubMed  Google Scholar 

  • Brocker DT, Grill WM. Principles of electrical stimulation of neural tissue. Handb Clin Neurol. 2013;116:3–18.

    Article  PubMed  Google Scholar 

  • Bronstein JM, Tagliati M, McIntyre C, Chen R, Cheung T, Hargreaves EL, Israel Z, et al. The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation. 2015;18(2):85–8; discussion 88–9

    Article  PubMed  Google Scholar 

  • Butson CR, Cooper SE, Henderson JM, McIntyre CC. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. NeuroImage. 2007;34(2):661–70. Epub 2006 Nov 17. PubMed PMID: 17113789; PubMed Central PMCID: PMC1794656

    Article  PubMed  Google Scholar 

  • Castro FJ, Pollo C, Meuli R, Maeder P, Cuisenaire O, Cuadra MB, Villemure JG, et al. A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms. IEEE Trans Med Imaging. 2006;25:1440–50.

    Article  PubMed  Google Scholar 

  • Chung M, Huh R. Different clinical course of pallidal deep brain stimulation for phasic- and tonic-type cervical dystonia. Acta Neurochir. 2016;158(1):171–80; discussion 180

    Article  PubMed  Google Scholar 

  • Coombs SJ, Curtis DR, Eccles JC. The interpretation of spike potentials of motoneurons. J Physiol. 1957;39:198–231.

    Article  Google Scholar 

  • Cooper IS, Upton AR, Amin I. Reversibility of chronic neurologic deficits. Some effects of electrical stimulation of the thalamus and internal capsule in man. Appl Neurophysiol. 1980;43(3–5):244–58.

    CAS  PubMed  Google Scholar 

  • Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B. Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet. 2000;355(9222):2220–1.

    Article  CAS  PubMed  Google Scholar 

  • Daniels C, Krack P, Volkmann J, Raethjen J, Pinsker MO, Kloss M, Tronnier V, et al. Is improvement in the quality of life after subthalamic nucleus stimulation in Parkinson’s disease predictable? Mov Disord. 2011;26(14):2516–21.

    Article  PubMed  Google Scholar 

  • Dayal V, Grover T, Limousin P, et al. The effect of short pulse width settings on the therapeutic window in subthalamic nucleus deep brain stimulation for Parkinson’s disease. J Parkinsons Dis. 2018;8(2):273–9

    Article  PubMed  Google Scholar 

  • Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, Rodriguez-Oroz MC, et al. Deep brain stimulation: postoperative issues. Mov Disord. 2006;21 Suppl 14:S219–37.

    Google Scholar 

  • Donne J. Devotions upon emergent occasions: together with death’s duel. Scotts Valley, CA: Createspace Independent Publishing Platform; 2012.

    Google Scholar 

  • Espay AJ, Trosch R, Suarez G, Johnson J, Marchese D, Comella C. Minimal clinically important change in the Toronto Western Spasmodic Torticollis Rating Scale. Parkinsonism Relat Disord. 2018;52:94–7.

    Article  PubMed  Google Scholar 

  • Ferraye MU, Debû B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133:205–14.

    Article  CAS  PubMed  Google Scholar 

  • Geevarghese R, O’Gorman Tuura R, Lumsden DE, Samuel M, Ashkan K. Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review. Stereotact Funct Neurosurg. 2016;94(3):159–63.

    Article  PubMed  Google Scholar 

  • Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, et al.; Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.

    Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324(5925):354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain. 2014;137(Pt 1):109–21.

    Article  PubMed  Google Scholar 

  • Guo T, Parrent AG, Peters TM. Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation. Comput Aided Surg. 2007;12(6):325–34.

    Article  PubMed  Google Scholar 

  • Hariz M, Blomstedt P, Zrinzo L. Future of brain stimulation: new targets, new indications, new technology. Mov Disord. 2013;28(13):1784–92.

    Article  PubMed  Google Scholar 

  • He L, Lee EY, Sterling NW, Kong L, Lewis MM, Du G, Eslinger PJ, et al. The key determinants to quality of life in Parkinson’s disease patients: results from the Parkinson’s Disease Biomarker Program (PDBP). J Parkinsons Dis. 2016;6(3):523–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holsheimer J, Dijkstra E, Demeulemeester H, Nuttin B. Chronaxie calculated from current-duration and voltage-duration data. J Neurosci Methods. 2000;97:45–50.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Watts RL, Montgomery EB Jr. Effects of deep brain stimulation frequency on bradykinesia of Parkinson’s disease. Mov Disord. 2014;29(2):203–6.

    Article  PubMed  Google Scholar 

  • Hutson M. Has artificial intelligence become alchemy? Science. 2018;360(6388):478. PubMed PMID: 29724937. https://doi.org/10.1126/science.360.6388.478.

  • Kita H, Kitai ST. Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res. 1991;564(2):296–305.

    Article  CAS  PubMed  Google Scholar 

  • Krack P, Fraix V, Mendes A, Benabid AL, Pollak P. Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17(Suppl 3):S188–97.

    Article  PubMed  Google Scholar 

  • Kupsch A, Benecke R, Müller J, Trottenberg T, Schneider GH, Poewe W, Eisner W, et al.; Deep-Brain Stimulation for Dystonia Study Group. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355(19):1978–90.

    Google Scholar 

  • Kupsch A, Tagliati M, Vidailhet M, Aziz T, Krack P, Moro E, Krauss JK. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. 2011;26 Suppl 1:S37–53.

    Article  PubMed  Google Scholar 

  • Larson PS, Richardson RM, Starr PA, Martin AJ. Magnetic resonance imaging of implanted deep brain stimulators: experience in a large series. Stereotact Funct Neurosurg. 2008;86(2):92–100.

    Article  PubMed  Google Scholar 

  • Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6:046001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffmann D, Broussolle E, Perret JE, Benabid AL. Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord. 1995;10(5):672–4.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yianni J, Wang S, Bain PG, Stein JF, Aziz TZ. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia. Exp Neurol. 2006;198(1):204–13.

    Article  PubMed  Google Scholar 

  • Llinas RR, Terzuolo CA. Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms on alpha extensor motoneurons. J Neurophysiol. 1964;27:579–91.

    Article  CAS  PubMed  Google Scholar 

  • Maslow AH. The psychology of science. Manhattan: Harper & Row; 1966.

    Google Scholar 

  • McIntyre CC, Grill WM. Excitation of central nervous system neurons by non-uniform electric fields. Biophys J. 1999;76:878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meoni S, Fraix V, Castrioto A, Benabid AL, Seigneuret E, Vercueil L, Pollak P, et al. Pallidal deep brain stimulation for dystonia: a long term study. J Neurol Neurosurg Psychiatry. 2017;88(11):960–7.

    Article  PubMed  Google Scholar 

  • Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, et al. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol. 2009;216(1):166–76.

    Article  PubMed  Google Scholar 

  • Miocinovic S, Khemani P, Whiddon R, Zeilman P, Martinez-Ramirez D, Okun MS, Chitnis S. Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism Relat Disord. 2014;20(12):1434–7.

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr. Effect of subthalamic nucleus stimulation patterns on motor performance in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11(3):167–71.

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr. Effects of GPi stimulation on human thalamic neuronal activity. Clin Neurophysiol. 2006;117(12):2691–702.

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr. Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism Relat Disord. 2007;13(8):455–65.

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr. Deep brain stimulation programming: principles and practice. 1st ed. Oxford: Oxford University Press; 2010. ISBN 978-0-19-973852-6.

    Google Scholar 

  • Montgomery EB Jr. The epistemology of deep brain stimulation and neuronal pathophysiology. Front Integr Neurosci. 2012;6:78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery EB Jr. Modeling and theories of pathophysiology and physiology of the basal ganglia–thalamic–cortical system: critical analysis. Front Hum Neurosci. 2016;10:469.

    Google Scholar 

  • Montgomery EB Jr. Deep brain stimulation programming: mechanisms, principles and practice. 2nd ed. Oxford: Oxford University Press; 2017.

    Google Scholar 

  • Montgomery EB Jr. Medical reasoning: the nature and use of medical knowledge. Oxford: Oxford University Press; 2018.

    Book  Google Scholar 

  • Montgomery EB Jr., Baker KB. Mechanisms of deep brain stimulation and future technical developments. Neurol Res. 2000;22(3):259–66.

    Article  PubMed  Google Scholar 

  • Moreau C, Defebvre L, Destée A, Bleuse S, Clement F, Blatt JL, Krystkowiak P, et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. 2008;71(2):80–4.

    Article  CAS  PubMed  Google Scholar 

  • Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology. 2002;59:706–13.

    Article  CAS  PubMed  Google Scholar 

  • Moro E, Poon YY, Lozano AM, Saint-Cyr JA, Lang AE. Subthalamic nucleus stimulation: improvements in outcome with reprogramming. Arch Neurol. 2006;63(9):1266. -72-36

    PubMed  Google Scholar 

  • Moro E, Piboolnurak P, Arenovich T, Hung SW, Poon YY, Lozano AM. Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur J Neurol. 2009;16(4):506–12.

    Article  CAS  PubMed  Google Scholar 

  • Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. 2010;133(pt 1):215–24.

    Article  PubMed  Google Scholar 

  • Moro E, LeReun C, Krauss JK, Albanese A, Lin JP, Walleser Autiero S, Brionne TC, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24(4):552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST. Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res. 1987;437(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  • Nosko D, Ferraye MU, Fraix V, Goetz L, Chabardès S, Pollak P, Debû B. Low-frequency versus high-frequency stimulation of the pedunculopontine nucleus area in Parkinson’s disease: a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2015;86(6):674–9.

    Article  CAS  PubMed  Google Scholar 

  • Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, Foote KD. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–5.

    Article  PubMed  Google Scholar 

  • Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, Alterman R, et al; SJM DBS Study Group. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11(2):140–9.

    Google Scholar 

  • Pinsker MO, Herzog J, Falk D, Volkmann J, Deuschl G, Mehdorn M. Accuracy and distortion of deep brain stimulation electrodes on postoperative MRI and CT. Zentralbl Neurochir. 2008;69(3):144–7.

    Article  CAS  PubMed  Google Scholar 

  • Pollo C, Kaelin-Lang A, Oertel MF, Stieglitz L, Taub E, Fuhr P, Lozano AM, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(Pt 7):2015–26.

    Article  PubMed  Google Scholar 

  • Pourfar MH, Mogilner AY, Farris S, Giroux M, Gillego M, Zhao Y, Blum D, Bokil H, Pierre MC. Model-based deep brain stimulation programming for Parkinson’s disease: the GUIDE pilot study. Stereotact Funct Neurosurg. 2015;93(4):231–9. https://doi.org/10.1159/000375172. Epub 2015 May 14. PubMed PMID: 25998447

    Article  PubMed  Google Scholar 

  • Ramirez de Noriega F, Eitan R, Marmor O, Lavi A, Linetzky E, Bergman H, Israel Z. Constant current versus constant voltage subthalamic nucleus deep brain stimulation in Parkinson’s disease. Stereotact Funct Neurosurg. 2015;93:114–21.

    Article  PubMed  Google Scholar 

  • Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.

    Article  PubMed  Google Scholar 

  • Ricchi V, Zibetti M, Angrisano S, Merola A, Arduino N, Artusi CA, Rizzone M, et al. Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimul. 2012;5:388–92.

    Article  PubMed  Google Scholar 

  • Santaniello S, McCarthy MM, Montgomery EB Jr, Gale JT, Kopell N, Sarma SV. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc Natl Acad Sci U S A. 2015;112(6):E586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüpbach WMM, Chabardes S, Matthies C, Pollo C, Steigerwald F, Timmermann L, Visser Vandewalle V, et al. Directional leads for deep brain stimulation: opportunities and challenges. Mov Disord. 2017;32(10):1371–5.

    Article  PubMed  Google Scholar 

  • Sillay KA, Chen JC, Montgomery EB. Long-term measurement of therapeutic electrode impedance in deep brain stimulation. Neuromodulation. 2010;13(3):195–200.

    Article  PubMed  Google Scholar 

  • Sillay KA, Rutecki P, Cicora K, Worrell G, Drazkowski J, Shih JJ, Sharan AD, et al. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Brain Stimul. 2013;6(5):718–26.

    Article  PubMed  Google Scholar 

  • Steigerwald F, Timmermann L, Kühn A, Schnitzler A, Reich MM, Kirsch AD, Barbe MT, et al. Pulse duration settings in subthalamic stimulation for Parkinson’s disease. Mov Disord. 2018;33(1):165–9.

    Article  PubMed  Google Scholar 

  • Steriade M, Deschenes M, Oakson G. Background firing and responsiveness of pyramidal tract neurons and interneurons. J Neurophysiol. 1974;37:1065–92.

    Article  CAS  PubMed  Google Scholar 

  • Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology. 2003;60(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  • Thevathasan W, Debu B, Aziz T, Bloem BR, Blahak C, Butson C, Czernecki V, et al.; Movement Disorders Society PPN DBS Working Group in collaboration with the World Society for Stereotactic and Functional Neurosurgery. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord. 2018;33(1):10–20.

    Google Scholar 

  • Tyulmankov D, Tass PA, Bokil H. Periodic flashing coordinated reset stimulation paradigm reduces sensitivity to ON and OFF period durations. PLoS One. 2018;13(9):e0203782. https://doi.org/10.1371/journal.pone.0203782. eCollection 2018. PubMed PMID: 30192855; PubMed Central PMCID: PMC6128645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urasaki E, Fukudome T, Hirose M, Nakane S, Matsuo H, Yamakawa Y. Neuroleptic malignant syndrome (parkinsonism-hyperpyrexia syndrome) after deep brain stimulation of the subthalamic nucleus. J Clin Neurosci. 2013;20(5):740–1. https://doi.org/10.1016/j.jocn.2012.04.024. Epub 2013 Mar 5. PubMed PMID: 23465352

    Article  PubMed  Google Scholar 

  • Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, Lagrange C, et al.; French Stimulation du Pallidum Interne dans la Dystonie (SPIDY) Study Group. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352(5):459–67.

    Google Scholar 

  • Volkmann J, Herzog J, Kopper F, Deuschl G. Introduction to the programming of deep brain stimulators. Mov Disord. 2002;17(Suppl 3):S181–7.

    Google Scholar 

  • Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord. 2006;21(Suppl 14):S284–9.

    Article  PubMed  Google Scholar 

  • Volkmann J, Wolters A, Kupsch A, Müller J, Kühn AA, Schneider GH, Poewe W, et al. DBS Study Group for Dystonia. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol. 2012;11(12):1029–38.

    Google Scholar 

  • Wagle Shukla A, Zeilman P, Fernandez H, Bajwa JA, Mehanna R. DBS programming: an evolving approach for patients with Parkinson’s disease. Parkinsons Dis. 2017;2017:1–11.

    Article  Google Scholar 

  • Walker HC, Huang H, Gonzalez CL, Bryant JE, Killen J, Cutter GR, Knowlton RC, Montgomery EB, Guthrie BL, Watts RL. Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord. 2012;27(7):864–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB. Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of parkinsonism. Brain Stimul. 2016;9(4):609–17. https://doi.org/10.1016/j.brs.2016.03.014. Epub 2016 Mar 22. PubMed PMID: 27151601

    Article  PubMed  Google Scholar 

  • Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, Marks WJ Jr, et al.; CSP 468 Study Group. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65.

    Google Scholar 

  • Wei XF, Grill WM. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J Neural Eng. 2009;6:046008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojtecki L, Vesper J, Schnitzler A. Interleaving programming of subthalamic deep brain stimulation to reduce side effects with good motor outcome in a patient with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(4):293–4.

    Article  PubMed  Google Scholar 

  • Yokochi F, Kato K, Iwamuro H, Kamiyama T, Kimura K, Yugeta A, Okiyama R, et al. Resting-state pallidal-cortical oscillatory couplings in patients with predominant phasic and tonic dystonia. Front Neurol. 2018;9:375.

    Article  PubMed  PubMed Central  Google Scholar 

  • York MK, Moro E. No differences in neuropsychological outcomes between constant current and voltage current subthalamic deep brain stimulation for Parkinson’s disease. Ann Transl Med. 2017;5(7):177.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin B. Montgomery Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Godeiro, C., Moro, E., Montgomery, E.B. (2020). Programming: General Aspects. In: Temel, Y., Leentjens, A., de Bie, R., Chabardes, S., Fasano, A. (eds) Fundamentals and Clinics of Deep Brain Stimulation. Springer, Cham. https://doi.org/10.1007/978-3-030-36346-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36346-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36345-1

  • Online ISBN: 978-3-030-36346-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics