Skip to main content

Portland 3D Printing of Portland Cement Pastes with Additions of Kaolin, Superplastificant, and Calcium Carbonate

  • Conference paper
  • First Online:
TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 5781 Accesses

Abstract

The main goal in this investigation is to develop inexpensive formulations of Portland cement pastes for additive manufacturing using the direct ink writing technique. Kaolin, a superplastificant, and calcium carbonate additions were used as additives and modifiers of the printing material. A total of 3 formulations were developed with acceptable shape stability and finishing of the manufactured parts. Cylindrical samples of 17 mm in diameter and 26 mm of height were built in order to be tested in compression tests. The microstructure was characterized with scanning electron microscopy, density, and compression tests. Results showed one formulation to be the best one, which was associated mainly to an optimal kaolin content as rheology regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Portafolio (2016) El sector constructor está pasando el año en Colombia

    Google Scholar 

  2. Agudelo HA, Hernández AV, Cardona DAR (2012) Sostenibilidad: Actualidad y necesidad en el sector de la construcción en Colombia. Gestión y Ambient 15:105–118

    Google Scholar 

  3. Tattersall GH (1991) Workability and quality control of concrete, 1st edn. Taylor & Francis Group

    Google Scholar 

  4. Nilson AH, Winter G, Urquhart LC, Charles Edward O (1999) Diseño de estructuras de concreto. McGraw-Hill

    Google Scholar 

  5. Li Z, Xiao L, Wei X (2007) Determination of concrete setting time using electrical resistivity measurement. J Mater Civ Eng 19:423–427

    Article  Google Scholar 

  6. Papayianni I, Tsohos G, Oikonomou N, Mavria P (2005) Influence of superplasticizer type and mix design parameters on the performance of them in concrete mixtures. Cement Concr Compos 27(2):217–222

    Article  CAS  Google Scholar 

  7. Kosmatka SH, Panarese WC, Kerkhoff B (2002) Design and control of concrete mixtures, vol 5420. Portland Cement Association, Skokie, IL

    Google Scholar 

  8. Lloret E, Shahab AR, Linus M, Flatt RJ, Gramazio F, Kohler M, Langenberg S (2015) Complex concrete structures. Comput Aided Des 60:40–49

    Article  Google Scholar 

  9. Harmsen TE (2005) Diseño de estructuras de concreto armado. Fondo editorial PUCP

    Google Scholar 

  10. Skibicki S (2017) Optimization of cost of building with concrete slabs based on the maturity method. In: IOP conference series: materials science and engineering, vol 245

    Google Scholar 

  11. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196

    Article  CAS  Google Scholar 

  12. Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1)

    Google Scholar 

  13. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  CAS  Google Scholar 

  14. Schwentenwein M, Homa J (2014) Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 12(1):1–7

    Article  Google Scholar 

  15. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290

    Article  CAS  Google Scholar 

  16. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458

    Article  CAS  Google Scholar 

  17. Sun J, Zhou W, Huang D, Fuh JYH, Hong GS (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8(8):1605–1615

    Article  CAS  Google Scholar 

  18. Duda T, Raghavan LV (2016) 3D metal printing technology. IFAC-PapersOnLine 49(29):103–110

    Article  Google Scholar 

  19. Rael R, San Fratello V (2011) Material design and analysis for 3D-printed fiberreinforced cement polymer building components. In: Conference Ambience ’11, pp 136–139

    Google Scholar 

  20. Ivorra S, Garcés P, Catalá G, Andión LG, Zornoza E (2010) Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Mater Des 31(3):1553–1558

    Article  CAS  Google Scholar 

  21. Gołaszewski J, Szwabowski J (2004) Influence of superplasticizers on rheological behaviour of fresh cement mortars. Cem Concr Res 34(2):235–248

    Article  Google Scholar 

  22. Öztürk IE (2018) The future of 3D printing technology in the construction industry: a systematic literature review. Eurasian J Civil Eng Archit 2(2)

    Google Scholar 

  23. Bos F, Wolfs R, Ahmed Z, Salet T (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyping 11(3):209–225

    Article  Google Scholar 

  24. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246

    Article  CAS  Google Scholar 

  25. Ma G, Wang L (2017) A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Front Struct Civil Eng 12(3):382–400

    Article  Google Scholar 

  26. Lee J-Y, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133

    Article  Google Scholar 

  27. Wu P, Wang J, Wang X (2016) A critical review of the use of 3-D printing in the construction industry. Autom Constr 68:21–31

    Article  Google Scholar 

  28. Buswell RA, Leal de Silva WR, Jones SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cement and Concrete Research

    Google Scholar 

  29. Bos F, Wolfs R, Ahmed Z, Salet T (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys. Prototyping 11:209–225

    Article  Google Scholar 

  30. Revelo CF, Colorado HA (2018) 3D printing of kaolinite clay ceramics using the Direct Ink Writing (DIW) technique. Ceram Int 44(5):5673–5682

    Article  CAS  Google Scholar 

  31. Ordoñez E, Gallego JM, Colorado HA (2019) 3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry. Appl Clay Sci 182:105285

    Article  Google Scholar 

  32. Restrepo JJ, Colorado HA (2019) Additive manufacturing of composites made of epoxy resin with magnetite particles fabricated with the direct ink writing technique. J Compos Mater, 0021998319865019

    Google Scholar 

  33. Mejia R, Torres J (2007) Influencia de la composición mineralógica de los caolines sobre el desempeño de morteros adicionados con mk. DYNA 74(153):61–67

    Google Scholar 

  34. Shen J, Xie Z (2012) Effects of kaolin on the engineering properties of Portland cement concrete. Appl Mech Mater 174:76–81

    Article  Google Scholar 

  35. Bu J, Tian Z, Zheng S (2017) Effect of sand content on strength and pore structure of cement mortar. J Wuhan Univ Technol-Mater Sci Ed 32:382–390

    Google Scholar 

  36. Yalley PP, Sam A (2018) Effect of sand fines and water/cement ratio on concrete properties. Civil Eng Res J 4

    Google Scholar 

  37. Gosselin C, Duballet R, Roux P (2016) Large-scale 3D printing of ultra-high performance concrete—a new processing route for architects and builders. Mater Des 100:102–109

    Google Scholar 

  38. Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268

    Article  Google Scholar 

  39. Shen J, Xie Z (2012) Effects of kaolin on the engineering properties of Portland cement concrete. Appl Mech Mater 174:76–81

    Article  Google Scholar 

  40. Tsivilis S, Batis G (2000) Properties and behavior of limestone cement concrete and mortar. Cement Concr Res 30

    Google Scholar 

  41. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cement Concr Res 38(6):848–860

    Google Scholar 

  42. Bu J, Tian Z (2017) Effect of sand content on strength and pore structure of cement mortar. J Mater Sci 32:382–390

    CAS  Google Scholar 

  43. Li Z, Ding Z (2003) Property improvement of Portland cement by incorporating with metakaolin and slag. Cement Concr Res 33:579–584

    Google Scholar 

  44. Courard L, Darimont A (2003) Durability of mortars modified with metakaolin. Cement Concr Res 33

    Google Scholar 

  45. Malaeb Z, Hachem H (2015) 3D concrete printing: machine and mix design. Int J Civil Eng Technol 6:14–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry A. Colorado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vergara, L.A., Colorado, H.A. (2020). Portland 3D Printing of Portland Cement Pastes with Additions of Kaolin, Superplastificant, and Calcium Carbonate. In: TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36296-6_20

Download citation

Publish with us

Policies and ethics