Skip to main content

A Survey on the Unconditional Convergence and the Invertibility of Frame Multipliers with Implementation

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The paper presents a survey over frame multipliers and related concepts. In particular, it includes a short motivation of why multipliers are of interest to consider, a review as well as extension of recent results, devoted to the unconditional convergence of multipliers, sufficient and/or necessary conditions for the invertibility of multipliers, and representation of the inverse via Neumann-like series and via multipliers with particular parameters. Multipliers for frames with specific structure, namely Gabor multipliers, are also considered. Some of the results for the representation of the inverse multiplier are implemented in Matlab-codes and the algorithms are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://ltfat.github.io/doc/base/mulaclab.html.

References

  1. S. T. Ali, J.-P. Antoine, and J.-P. Gazeau. Coherent States, Wavelets and Their Generalization. Theoretical and Mathematical Physics. Springer New York, 2014. Second Expanded Edition.

    Google Scholar 

  2. M. L. Arias and M. Pacheco. Bessel fusion multipliers. J. Math. Anal. Appl., 348(2):581–588, 2008.

    Article  MathSciNet  Google Scholar 

  3. P. Balazs. Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl., 325(1):571–585, 2007.

    Article  MathSciNet  Google Scholar 

  4. P. Balazs. Frames and finite dimensionality: Frame transformation, classification and algorithms. Appl. Math. Sci., 2(41–44):2131–2144, 2008.

    MathSciNet  MATH  Google Scholar 

  5. P. Balazs. Hilbert-Schmidt operators and frames - classification, best approximation by multipliers and algorithms. International Journal of Wavelets, Multiresolution and Information Processing, 6(2):315–330, March 2008.

    Google Scholar 

  6. P. Balazs, J.-P. Antoine, and A. Grybos. Weighted and controlled frames: Mutual relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Process., 8(1):109–132, 2010.

    Article  MathSciNet  Google Scholar 

  7. P. Balazs, D. Bayer, and A. Rahimi. Multipliers for continuous frames in Hilbert spaces. J. Phys. A: Math. Theor., 45(24):244023, 2012.

    Google Scholar 

  8. P. Balazs and K. Gröchenig. A guide to localized frames and applications to Galerkin-like representations of operators. In I. Pesenson, H. Mhaskar, A. Mayeli, Q. T. L. Gia, and D.-X. Zhou, editors, Novel methods in harmonic analysis with applications to numerical analysis and data processing, Applied and Numerical Harmonic Analysis series (ANHA). Birkhauser/Springer, 2017.

    Google Scholar 

  9. P. Balazs, N. Holighaus, T. Necciari, and D. Stoeva. Frame theory for signal processing in psychoacoustics. In R. Balan, J. J. Benedetto, W. Czaja, and K. Okoudjou, editors, Excursions in Harmonic Analysis Vol. 5,, pages –. Springer, 2017.

    Google Scholar 

  10. P. Balazs, B. Laback, G. Eckel, and W. Deutsch. Time-frequency sparsity by removing perceptually irrelevant components using a simple model of simultaneous masking. IEEE Transactions on Audio, Speech, and Language Processing, 18(1):34–49, 2010.

    Article  Google Scholar 

  11. P. Balazs and D. T. Stoeva. Representation of the inverse of a frame multiplier. J. Math. Anal. Appl., 422(2):981–994, 2015.

    Article  MathSciNet  Google Scholar 

  12. N. K. Bari. Biorthogonal systems and bases in Hilbert space. Uch. Zap. Mosk. Gos. Univ., 148:69–107, 1951.

    MathSciNet  Google Scholar 

  13. J. Benedetto and G. Pfander. Frame expansions for Gabor multipliers. Applied and Computational Harmonic Analysis (ACHA)., 20(1):26–40, Jan. 2006.

    Google Scholar 

  14. P. G. Casazza. The art of frame theory. Taiwanese J. Math., 4(2):129–201, 2000.

    Article  MathSciNet  Google Scholar 

  15. P. G. Casazza and O. Christensen. Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3(5):543–557, 1997.

    Article  MathSciNet  Google Scholar 

  16. P. G. Casazza and G. Kutyniok, editors. Finite frames. Theory and applications. Boston, MA: Birkhäuser, 2013.

    MATH  Google Scholar 

  17. O. Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 2016. Second Expanded Edition.

    Google Scholar 

  18. O. Christensen and R. Laugesen. Approximately dual frames in Hilbert spaces and applications to Gabor frames. Sampl. theory Signal Image Process., 9(1-2):77–89, 2010.

    MathSciNet  MATH  Google Scholar 

  19. J. B. Conway. A Course in Functional Analysis. Graduate Texts in Mathematics. Springer New York, 2. edition, 1990.

    Google Scholar 

  20. N. Cotfas and J.-P. Gazeau. Finite tight frames and some applications. Journal of Physics A: Mathematical and Theoretical, 43(19):193001, 2010.

    Google Scholar 

  21. R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Am. Math. Soc., 72:341–366, 1952.

    Article  MathSciNet  Google Scholar 

  22. H. G. Feichtinger and K. Nowak. A first survey of Gabor multipliers. Feichtinger, Hans G. (ed.) et al., Advances in Gabor analysis. Basel: Birkhäuser. Applied and Numerical Harmonic Analysis. 99–128 (2003)., 2003.

    Google Scholar 

  23. F. Futamura. Frame diagonalization of matrices. Linear Algebra Appl., 436(9):3201–3214, 2012.

    Article  MathSciNet  Google Scholar 

  24. J.-P. Gazeau. Coherent states in quantum physics. Wiley, Weinheim, 2009.

    Book  Google Scholar 

  25. I. Gohberg, S. Goldberg, and M. A. Kaashoek. Basic Classes of Linear Operators. Basel: Birkhäuser, 2003.

    Book  Google Scholar 

  26. K. Gröchenig. Representation and approximation of pseudodifferential operators by sums of Gabor multipliers. Appl. Anal., 90(3-4):385–401, 2010.

    Article  MathSciNet  Google Scholar 

  27. D. Han and D. R. Larson. Frames, Bases and Group Representations. Mem. Amer. Math. Soc., 697:1–94, 2000.

    MathSciNet  MATH  Google Scholar 

  28. G. Matz and F. Hlawatsch. Linear Time-Frequency filters: On-line algorithms and applications, chapter 6 in ’Application in Time-Frequency Signal Processing’, pages 205–271. Electrical Engineering & Applied Signal Processing Series (Book 10). CRC Press, Boca Raton, 2002.

    Google Scholar 

  29. T. Necciari, N. Holighaus, P. Balazs, Z. Průša, P. Majdak, and O. Derrien. Audlet filter banks: A versatile analysis/synthesis framework using auditory frequency scales. Applied Sciences, 8(1), 2018. accepted.

    Google Scholar 

  30. T. Necciari, S. Savel, B. Laback, S. Meunier, P. Balazs, R. Kronland-Martinet, and S. Ystad. Auditory time-frequency masking for spectrally and temporally maximally-compact stimuli. PLOS ONE, 2016.

    Google Scholar 

  31. A. Olivero, B. Torresani, and R. Kronland-Martinet. A class of algorithms for time-frequency multiplier estimation. IEEE Transactions on Audio, Speech, and Language Processing, 21(8):1550–1559, 2013.

    Article  Google Scholar 

  32. G. E. Pfander. Gabor frames in finite dimensions. In Finite frames. Theory and applications., pages 193–239. Boston, MA: Birkhäuser, 2013.

    Google Scholar 

  33. Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs. The Large Time-Frequency Analysis Toolbox 2.0. In M. Aramaki, O. Derrien, R. Kronland-Martinet, and S. Ystad, editors, Sound, Music, and Motion, Lecture Notes in Computer Science, pages 419–442. Springer International Publishing, 2014.

    Google Scholar 

  34. A. Rahimi. Multipliers of generalized frames in Hilbert spaces. Bulletin of Iranian Mathematical Society, 37(1):63–83, 2011.

    MathSciNet  MATH  Google Scholar 

  35. A. Rahimi and P. Balazs. Multipliers for p-Bessel sequences in Banach spaces. Integral Equations Oper. Theory, 68(2):193–205, 2010.

    Article  MathSciNet  Google Scholar 

  36. R. Schatten. Norm Ideals of Completely Continuous Operators. Springer Berlin, 1960.

    Book  Google Scholar 

  37. P. Soendergaard. Gabor frames by sampling and periodization. Adv. Comput. Math., 27(4):355–373, 2007.

    Article  MathSciNet  Google Scholar 

  38. P. Soendergaard, B. Torrésani, and P. Balazs. The linear time frequency analysis toolbox. International Journal of Wavelets, Multiresolution and Information Processing, 10(4):1250032, 2012.

    Google Scholar 

  39. P. L. Søndergaard. Efficient Algorithms for the Discrete Gabor Transform with a long FIR window. J. Fourier Anal. Appl., 18(3):456–470, 2012.

    Article  MathSciNet  Google Scholar 

  40. D. T. Stoeva. Characterization of atomic decompositions, Banach frames, Xd-frames, duals and synthesis-pseudo-duals, with application to Hilbert frame theory. arXiv:1108.6282.

    Google Scholar 

  41. D. T. Stoeva and P. Balazs. Invertibility of multipliers. Appl. Comput. Harmon. Anal., 33(2):292–299, 2012.

    Article  MathSciNet  Google Scholar 

  42. D. T. Stoeva and P. Balazs. Canonical forms of unconditionally convergent multipliers. J. Math. Anal. Appl., 399(1):252–259, 2013.

    Article  MathSciNet  Google Scholar 

  43. D. T. Stoeva and P. Balazs. Detailed characterization of conditions for the unconditional convergence and invertibility of multipliers. Sampl. Theory Signal Image Process., 12(2-3):87–125, 2013.

    MathSciNet  MATH  Google Scholar 

  44. D. T. Stoeva and P. Balazs. Riesz bases multipliers. In M. Cepedello Boiso, H. Hedenmalm, M. A. Kaashoek, A. Montes-Rodríguez, and S. Treil, editors, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, volume 236 of Operator Theory: Advances and Applications, pages 475–482. Birkhäuser, Springer Basel, 2014.

    Google Scholar 

  45. D. T. Stoeva and P. Balazs. On the dual frame induced by an invertible frame multiplier. Sampling Theory in Signal and Image Processing, 15:119–130, 2016.

    MathSciNet  MATH  Google Scholar 

  46. D. T. Stoeva and P. Balazs. Commutative properties of invertible multipliers in relation to representation of their inverses. In Sampling Theory and Applications (SampTA), 2017 International Conference on, pages 288–293. IEEE, 2017.

    Google Scholar 

  47. T. Strohmer. Numerical algorithms for discrete Gabor expansions. In Gabor analysis and algorithms. Theory and applications, pages 267–294, 453–488. Boston, MA: Birkhäuser, 1998.

    Google Scholar 

  48. D. Wang and G. J. Brown, editors. Computational Auditory Scene Analysis: Principles, Algorithms, and Applications. Wiley-IEEE Press, 2006.

    Google Scholar 

  49. K. Zhu. Operator Theory In Function Spaces. Marcel Dekker New York, 1990.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Austrian Science Fund (FWF) START—project FLAME (‘Frames and Linear Operators for Acoustical Modeling and Parameter Estimation’; Y 551-N13). They thank Z. Prusa for help with LTFAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana T. Stoeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoeva, D.T., Balazs, P. (2020). A Survey on the Unconditional Convergence and the Invertibility of Frame Multipliers with Implementation. In: Casey, S., Okoudjou, K., Robinson, M., Sadler, B. (eds) Sampling: Theory and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36291-1_6

Download citation

Publish with us

Policies and ethics