Skip to main content

Sampling Theory in a Fourier Algebra Setting

  • Chapter
  • First Online:
Sampling: Theory and Applications

Abstract

Sampling theory has been studied in a variety of function spaces and our purpose here is to develop the theory in a Fourier algebra setting. This aspect is not as well-known as it might be, possibly because the approximate sampling theorem, central to our discussion, had what could be called a mysterious birth and a confused adolescence. We also discuss functions of the familiar bandlimited and bandpass types, showing that they too have a place in this Fourier algebra setting. This paper combines an expository and historical treatment of the origins of exact and approximate sampling, including bandpass sampling, all in the Fourier algebra setting. It has two objectives. The first is to provide an accessible and rigorous account of this sampling theory. The various cases mentioned above are each discussed in order to show that the Fourier algebra, a Banach space, is a broad and natural setting for the theory. The second objective is to clarify the early development of approximate sampling in the Fourier algebra and to unravel its origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name classical sampling theorem already occurs in [8, p. 75].

  2. 2.

    The adjective ‘exact’ is in contrast with ‘approximate’ sampling; the two forms are defined in Sect. 2.4.

  3. 3.

    This terminology was not used by these authors but at the time it was relatively recent [27].

  4. 4.

    The time and frequency domains are both represented by the real line because it is self-dual [47].

  5. 5.

    In the interval ψ has only finitely many discontinuities and its real and imaginary parts have only finitely many maxima and minima [55, p. 407].

  6. 6.

    The translates of the period are essentially cosets of the quotient group \(\mathbb {R}/\mathbb {S}^1\cong \mathbb {Z}\).

  7. 7.

    See [33, Sect. 6.3], [48, Chap. 19] for the complex analysis theory.

  8. 8.

    The extensions to \(\mathbb {C}\) are entire [33, Theorem 7.2].

  9. 9.

    The Fresnel integral is defined differently in [25, Vol. 1, p. 267, Sect. 6.9.2,(29)], [42, p. 353].

  10. 10.

    The formula is

    $$\displaystyle \begin{aligned} C(t) = \frac{1}{2} + \frac{1}{\uppi\, t} \sin \frac{\uppi}{2} t^2 + O\left(\frac{1}{t^2} \right); \end{aligned}$$

    this also follows from [42, p. 356].

  11. 11.

    Most of this note concerns summation formulae and establishes Theorem 6 (the approximate sampling theorem for A). Brown [8] and Weiss [56] are cited but not Standish [52] or Stickler [54]. In a short concluding section, Theorem 3 (the exact sampling theorem for A w) is proved under rather general hypotheses, namely that the signal f is in A w.

  12. 12.

    Their paper discusses continuous analogues of the binomial series and does not mention sampling.

  13. 13.

    There is one simple discontinuity at each of the end points ±π w of the interval and the number of maxima and minima of \(\cos \, t\uptau \) and \(\sin \,t\uptau \) is O(tw).

  14. 14.

    The symmetry of the intervals is consistent with the signals being real but this restriction is not imposed on f.

  15. 15.

    Known as the ‘quadrature’ function of g in signal processing [7, p. 269]. We are grateful to Professor Alister Burr of the Dept. of Electronics, University of York for explaining its significance in signal processing.

  16. 16.

    A striking case of multiple discovery occurs for exact sampling in the L 2 setting [29].

References

  1. M. Abramowitz and I. Stegun, Handbook of mathematical functions : with formulas, graphs, and mathematical tables, Dover Publications, New York, 1965.

    MATH  Google Scholar 

  2. A. V. Balakrishnan, A note on the sampling principle for continuous signals, IRE Trans. Inf. Th. IT-3 (1957), 143–146.

    Article  Google Scholar 

  3. M. G. Beaty, M. M. Dodson, S. P. Eveson, and J. R. Higgins, On the approximate form of Kluvánek’s theorem, J. Approx. Th. 160 (2009), 281–303.

    Article  MATH  Google Scholar 

  4. J. J. Benedetto and W. Czaja, Integration and modern analysis, Birkhäuser, Boston, 2009.

    Book  MATH  Google Scholar 

  5. J. J. Benedetto and J. S. G. Ferreira, Modern sampling theory, Birkhäuser, Boston, 2001.

    Book  MATH  Google Scholar 

  6. R. P. Boas, Summation formulas and band-limited signals, Tohôku Math. Journ. 24 (1972), 121–125.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. N. Bracewell, The Fourier Transform and its Applications. 2nd. edn. McGraw-Hill, New York, 1978.

    Google Scholar 

  8. J. L. Brown, Jr., On the error in reconstructing a non-bandlimited function by means of the band-pass sampling theorem, J. Math. Anal. Appl. 18 (1967), 75–84.

    Google Scholar 

  9. J. L. Brown, Jr., Erratum, J. Math. Anal. Appl. 21 (1968), 699.

    Article  MathSciNet  Google Scholar 

  10. P.L. Butzer, A survey of the Whittaker–Shannon sampling theorem and some of its extensions, J. Math. Research and Exposition, 3 (1983), 185–212.

    MathSciNet  MATH  Google Scholar 

  11. P. L. Butzer, M. M. Dodson, P. J. S. G. Ferreira, J. R. Higgins, G. Schmeisser and R. L. Stens, Seven pivotal theorems of Fourier analysis, signal analysis, numerical analysis and number theory: their interconnections, Bull. Math. Sci. 4, 3, (2014), 481–525.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. L. Butzer, P. J. S. G. Ferreira, J. R. Higgins, S. Saitoh, G. Schmeisser and R.L. Stens, Interpolation and Sampling: E. T. Whittaker, K. Ogura and Their Followers, J. Fourier Anal. Appl. 17, (2014), 320–354.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Butzer and A. Gessinger, The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections, Ann. Numerical Math. 4 (1997), 143–160.

    MathSciNet  MATH  Google Scholar 

  14. P. L. Butzer, M. Hauss, and R. L. Stens, The sampling theorem and its unique rôle in various branches of mathematics, Mathematical Sciences, Past and Present, 300 years of Mathematische Gesellschaft in Hamburg, Mitteilungen Math. Ges. Hamburg, Hamburg, 1990.

    Google Scholar 

  15. P. L. Butzer, J. R. Higgins, and R. L. Stens, Sampling theory of signal analysis. Development of mathematics 1950–2000, 193–234, Birkhäuser, Basel, 2000.

    Google Scholar 

  16. P. L. Butzer, J. R. Higgins, and R. L. Stens, Classical and approximate sampling theorems: Studies in the \({L}^p({\mathbb {R}})\)and the uniform norms, J. Approx. Theory 137 (2005), no. 2, 250–263.

    Google Scholar 

  17. P. L. Butzer, G. Schmeisser, and R. L. Stens, Shannon’s sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivatives – the aliasing error involved by their extensions from bandlimited to non-bandlimited signals, Entropy vol. 14 (2012), 2192–2226.

    Google Scholar 

  18. P. L. Butzer and W. Splettstößer, Approximation und Interpolation durch verallgemeinerte Abtastsummen, Forschungsberichte des Landes Nordrhein-Westfalen, vol. 2708, Westdeutscher Verlag, Opladen, 1977.

    Book  MATH  Google Scholar 

  19. P. L. Butzer, W. Splettstößer and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jber. d. Dt. Math.-Verein., vol. 3 (1988), 1–70.

    Google Scholar 

  20. C. J. de la Vallée Poussin, Collected works/Oeuvres Scientifiques, vol. III, P. L Butzer, J. Mawhin and P. Vetro, eds., Académie Royale de Belgique and Circolo Matematico di Palermo, Brussels and Palermo, 2004.

    Google Scholar 

  21. M. M. Dodson, Shannon’s sampling theorem, incongruent residue classes and Plancherel’s theorem, J. Théor. Nombres Bordeaux 14 (2002), 425–437.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. M. Dodson, Abstract exact and approximate sampling theorems, Chap 1. In: A I. Zayed and G. Schmeisser (eds.) New perspectives on approximation and sampling theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham (2014).

    Google Scholar 

  23. M. M. Dodson and A. M. Silva, Fourier analysis and the sampling theorem, Proc. Royal Irish Acad. 85A (1985), 81–108.

    MathSciNet  MATH  Google Scholar 

  24. H. Dym and H. P. McKean, Fourier Series and Integrals, Probability and Mathematical Statistics, No. 14. Academic Press, New York-London, 1972.

    Google Scholar 

  25. A. Erdélyi et al., (Bateman Manuscript Project) Higher transcendental functions, McGraw-Hill, New York, 1953.

    Google Scholar 

  26. L. Euler, Investigatio valoris integralis \(\int {\frac {x^{m-1}\;dx}{1 - 2x^k\cos \theta + x^{2k}}}\)a terminox = 0 adx = extensi, Opuscula Analytica II, (1785), 55–75.

    Google Scholar 

  27. P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (in French).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Faridani, A generalized sampling theorem for locally compact abelian groups, Math. Computation 63 (1994), 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. J. S. G. Ferreira and J. R. Higgins, The establishment of sampling as a scientific principle—a striking case of multiple discovery, Notices Amer. Math. Soc. 58 (2011), no. 10, 1446–1450.

    MathSciNet  MATH  Google Scholar 

  30. S. Goldman, Information theory, Constable, London, 1953.

    MATH  Google Scholar 

  31. E. A. Gonzalez-Velasco and E. Sanvicente, The Analytic Representation of Band-Pass Signals, J. Franklin Inst.310 (1980), 135–142.

    Article  MATH  Google Scholar 

  32. J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. 12 (1985), 45–89.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. R. Higgins, Sampling theory in Fourier and signal analysis: Foundations, Clarendon Press, Oxford, 1996.

    MATH  Google Scholar 

  34. J. R. Higgins, Historical origins of interpolation and sampling, Sampling Th. Signal and Image Proc. 2 (2003), 117–128.

    MathSciNet  MATH  Google Scholar 

  35. J. R. Higgins, Two basic formulae of Euler and their equivalence to Tschakalov’s sampling theorem, Sampling Th. Signal and Image Proc. 2 (2003), 259–270.

    MathSciNet  MATH  Google Scholar 

  36. J. R Higgins and R. L.Stens, Sampling theory in Fourier and signal analysis: Advanced topics, Oxford University Press, 1999.

    Google Scholar 

  37. A. J. Jerri, The Shannon sampling theorem— its various extensions and applications: a tutorial review, Proc. IEEE 65 (1977), 1565–1596.

    Article  MATH  Google Scholar 

  38. Y. Katznelson, An Introduction to Harmonic Analysis. Second ed. Dover, New York, 1976.

    Google Scholar 

  39. A. Kohlenberg, Exact interpolation of bandlimited functions, J. Appl. Phys. 24 (1953), 1432–1436.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Kolmogorov, Une série de Fourier-Lebesgue divergente partout, C. R. Acad. Sci. Paris, 183 (1926), 1327–1328.

    MATH  Google Scholar 

  41. T. W. Körner, Fourier Analysis, Cambridge University Press, 1988.

    Google Scholar 

  42. W. Magnus et al., Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966.

    Book  MATH  Google Scholar 

  43. D. Middleton, An Introduction to Statistical Communication Theory, McGraw-Hill, New York, 1960.

    MATH  Google Scholar 

  44. A. Papoulis, Error analysis in sampling theory, Proc. IEEE 54 (1966), 947–955.

    Article  Google Scholar 

  45. H. Pollard and O. Shisha, Variations on the binomial series, Amer. Math. Monthly 79 (1972), 495–499.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society Monographs: New Series 22, Clarendon Press, Oxford, 2000.

    Google Scholar 

  47. W. Rudin, Fourier analysis on groups, John Wiley, 1962.

    Google Scholar 

  48. W. Rudin, Real and complex analysis, McGraw Hill, New York, 1986.

    MATH  Google Scholar 

  49. D. Sayre, Some implications of a theorem due to Shannon, Acta Cryst., 5 (1952), 834.

    Google Scholar 

  50. M. Schwartz, W. R. Bennett and S. Stein, Communication Systems and Techniques, McGraw Hill, New York, 1966.

    MATH  Google Scholar 

  51. C. E. Shannon, Communication in the presence of noise, Proc. IRE, 37 (1949), 10–21.

    Article  MathSciNet  Google Scholar 

  52. C. J. Standish, Two remarks on the reconstruction of sampled non-bandlimited functions, IBM J. Res. Develop. 11 (1967), 648–649.

    Article  MATH  Google Scholar 

  53. E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971.

    MATH  Google Scholar 

  54. D. C. Stickler, An upper bound on the aliasing error, Proc. IEEE (Lett.) 55 (1967), 418–419.

    Article  Google Scholar 

  55. E. C. Titchmarsh, The Theory of Functions, 2nd edn., Oxford University Press, Oxford, 1939.

    MATH  Google Scholar 

  56. P. Weiss, An estimate of the error arising from misapplication of the sampling theorem, Notices Amer. Math. Soc. 10 (1963), p. 351.

    Google Scholar 

  57. E. T. Whittaker, On the functions which are represented by the expansions of the interpolation theory, Proc. Roy. Soc. Edinburgh, 35 (1915), 181–194.

    Article  MATH  Google Scholar 

  58. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth ed., Cambridge University Press, Cambridge, 1962.

    Google Scholar 

  59. J. M. Whittaker, The “Fourier” theory of the cardinal function, Proc. Edinburgh Math. Soc. 1 (1929), 169–176.

    Article  MATH  Google Scholar 

  60. P. M. Woodward, Probability and information theory, with applications to radar. Second ed. Pergamon Press, Oxford, 1964.

    Google Scholar 

  61. A. I. Zayed, Advances in Shannon’s sampling theory, CRC Press, Boca Raton, 1993.

    MATH  Google Scholar 

  62. A I. Zayed and G. Schmeisser (eds.), New perspectives on approximation and sampling theory, Appl. Numer. Harmon. Anal., Birkähuser/Springer, Cham, 2014.

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the editors for the opportunity to contribute to this centennial ANHA volume for Claude Shannon and particularly to Stephen Casey for his patience and long-distance support. Our thanks for their long standing interest and helpful comments also go to Paul Butzer, Paulo Ferreira and Simon Eveson, who also gave us invaluable assistance with LaTeX, and to the referee for suggesting an improvement to the presentation. We are also grateful to our families for their wonderful support which enabled us to complete this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maurice Dodson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurice Dodson, M., Higgins, J.R. (2020). Sampling Theory in a Fourier Algebra Setting. In: Casey, S., Okoudjou, K., Robinson, M., Sadler, B. (eds) Sampling: Theory and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36291-1_3

Download citation

Publish with us

Policies and ethics