Skip to main content

The Hindu Kush-Himalaya (HKH) Region in the Modern Global and Climate Context: Major Weather Systems, Monsoon, Asian Brown Clouds (ABCs), Digital Data/Models and Global Linkages of Telecoupling and Teleconnection all Affecting Global Human Well-Being

  • Chapter
  • First Online:
Hindu Kush-Himalaya Watersheds Downhill: Landscape Ecology and Conservation Perspectives

Abstract

The weather drives human society; but nowadays in the Anthropocene human society can drive the weather/climate too. The climate represents us with a global agglomerate of many predictors, including generic atmospheric pollution (e.g. carbon dioxide, methane, dust), the Asian Brown Cloud (ABC), cloud characteristics, volcanoes and landcover effects. Mountains and oceans play a large role for the global climate, and the Hindu Kush-Himalaya (HKH) is the major region in the world where snow and ice, glaciers are found; it makes for the third pole! Such mountains can have their own climate and often the details are not well known. That’s why many climate data and their models are not easy to interpret nor easy to forecast for the HKH region. The current global warming trend in the HKH region leaves most glaciers drying out, creating Glacier-fed Lake Outburst Floods (GLOFs) and resulting into wider harvest declines and failure leading to global food security conflicts. This situation is interwoven with globally coupled and tele-connected processes also affecting human well-being on an Asia and global scale. How to govern such situations in good terms is not well resolved, yet, while the global population and temperature will easily rise to unprecedented levels over the coming 100 years.

Publisher’s Note – Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This notion has been expressed already many years ago by Czech (2012) in a book resulting from the last International Polar Year (IPY) but we still have not solved this essential problem or addressed in relevant terms! The lack of relevant action on man-made climate change remains not only a massive frustration to the global audience but it represents a tragedy of epic proportions in the universe, with all life as we know it. Who is to be hold accountable?

References

  • Armstrong RL (2010) The glaciers of the Hindu Kush-Himalayan region: a summary of the science regarding glacier melt/retreat in the Himalayan, Hindu Kush, Karakoram, Pamir, and Tien Shan mountain ranges. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu

    Google Scholar 

  • Bajracharya SR, Shresta R (2011) The status of glaciers in the Hindu Kush – Himalayan region. ICIMOD, Kathmandu

    Google Scholar 

  • Barry RG (1992) Mountain weather and climate, 2nd edn. Rutledge Publishers, New York

    Google Scholar 

  • Blanford HF (1884) On the connection of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc Lond 37:3–22

    Article  Google Scholar 

  • Bobrowski M, Schickhoff U (2017) Why input matters: selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecol Model 359:92–102

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336:310–314. https://doi.org/10.1126/science.1215828

    Article  CAS  PubMed  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2012) Anthropogenic aerosols and the weakening of the south Asian summer monsoon. Science 334:502–505. https://doi.org/10.1126/science.1204994

    Article  CAS  Google Scholar 

  • Bonington C (2016) Mountaineer: a lifetime of climbing the Great Mountains of the world. Vertebrate Publishing, London

    Google Scholar 

  • Burga CA, F. Kloetzli and G. Grabherr (2004) Gebirge der Erde: Landschaft, Klima, Pflanzenwelt. Ulmer Eugen Publisher, Berlin

    Google Scholar 

  • Chaudhary RP, Aase TH, Vetaas OR, Subedi BP (2007) Local effects of global changes in the Himalayas: Manang, Nepal. Tribhuvan University Kathmandu Nepal, Universitetsforskening, Bergen. 223 pages

    Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson D et al (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563. https://doi.org/10.1017/S0954102009990642

    Article  Google Scholar 

  • Czech B (2012) Epitaph for the poles? In: Huettmann F (ed) Protection of the tree poles. Springer, New York, pp vii–vix

    Google Scholar 

  • Duan A, Wu G (2006) Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys Res Lett 33:L22704. https://doi.org/10.1029/2006GL027946

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. http://worldclim.org/version2

  • Flannery T (2007) The weather makers: our changing climate and what it means for life on earth. Penguin Books, London

    Google Scholar 

  • Foley JA, Levis S, Costa MH, Cramer W, Pollard D (2000) Incorporating dynamic vegetation cover within global climate models. Ecol Appl 10:1620–1632. https://doi.org/10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2

    Article  Google Scholar 

  • Fu X (2007) Impact of Atmosphere–Ocean coupling on the predictability of monsoon Intraseasonal oscillations. J Atmos Sci. https://doi.org/10.1175/JAS3830.1

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hilton J (1933) The Lost Horizon: A Novel: Harper Perennial Re-Edition 2012

    Google Scholar 

  • Huettmann F. (ed) (2012) Protection of the three poles. Springer Tokyo, Japan, p. 337. http://www.springerlink.com/content/978-4-431-54006-9#section=1049403&page=1

  • Huettmann F (2018a) Advanced data mining (cloning) of predicted climate-Scapes and their variances assessed with machine learning: an example from Southern Alaska shows topographical biases and strong differences. In: Humphries G, Magness DR, Huettmann F (eds) Machine learning for ecology and sustainable natural resource management. Springer, Cham, pp 227–241

    Chapter  Google Scholar 

  • Huettmann F (2018b) Climate change effects on terrestrial mammals: a review of global impacts of ecological Niche Decay in selected regions of high mammal importance. Encyclopedia of the Anthropocene. https://www.sciencedirect.com/referencework/9780128135761/encyclopedia-of-the-anthropocene

  • Huey RB, Salisbury R (2003) Success and death on Mount Everest. Am Alp J 45:1–10

    Google Scholar 

  • ICIMOD (2011) Glacial lakes and Glacial Lake outburst floods in Nepal Kathmandu, Nepal. http://www.icimod.org/dvds/201104_GLOF/reports/final_report.pdf

  • Kandel K, Huettmann F, Suwal MK, Regmi GR, Nijman V, Nekaris KAI, Lama ST, Thapa A, Sharma HP, Subedi TR (2015) Rapid multi-nation distribution assessment of a charismatic conservation species using open access ensemble model GIS predictions: red panda (Ailurus fulgens) in the Hindu-Kush Himalaya region. Biol Conserv 181:150–161

    Article  Google Scholar 

  • Karger D.N., O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R.W. Soria-Auza, N.E. Zimmermann, H.P. Linder and M. Kessler (2016) CHELSA climatologies at high resolution for the earth’s land surface areas (version 1.1). In: World Data Center for Climate (WDCC) at DKRZ

    Google Scholar 

  • Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann N, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth land surface areas. Sci Data 4:170122

    Article  Google Scholar 

  • Liu J, Hull V, Batistella M, DeFries R, Dietz T, Fu F, Hertel TW, Izaurralde RC, Lambin EF, Li S, Martinelli LA, McConnell WJ, Moran EF, Naylor R, Ouyang Z, Polenske KR, Reenberg A, de Miranda Rocha G, Simmons CS, Verburg PH, Vitousek PM, Zhang F, Zhu C (2013) Framing sustainability in a telecoupled world. Ecol Soc 18(26). https://doi.org/10.5751/ES-05873-180226

  • McIlveen R (1998) Fundamentals of Weather and Climate. S. Thornes Publisher, Cheltenham

    Google Scholar 

  • Messner R (1999) All Fourteen 8000’ers. Mountaineers Books; Revised edition

    Google Scholar 

  • Mi C, Zu Q, He L, Huettmann F, Jin N, Li J (2017) Climate change would enlarge suitable planting areas of sugarcanes in China. Int J Plant Prod 11(1):151–166

    Google Scholar 

  • Miehe G, Pendry C Chaudhary RP (2015) Nepal. An introduction to the natural history, ecology and human environment of the Himalayas. A companion to the Flora of Nepal. VII and 561 pp., numerous figs. and tables. Royal Botanic Garden, Edingburgh

    Google Scholar 

  • Moore GWK, Semple JL (2004) High Himalayan meteorology: weather at the south col of Mount Everest. Geophys Res Lett 31:L18109. https://doi.org/10.1029/2004GL020621

    Article  Google Scholar 

  • Moore G.W.K and J.L. Semple (2006) Weather and death on Mount Everest: an analysis of the into thin air storm. Bulletin of the American Meteorological Society April: https://doi.org/10.1175/BAMS-87-4-465

  • Mukherji A, Scott C, Molden D, Maharjan A (2018) Megatrends in Hindu Kush Himalaya: climate change, urbanisation and migration and their implications for water, energy and food. ICIMOD, Kathmanudu. http://lib.icimod.org/record/33713

    Google Scholar 

  • Næss A (1989) Ecology, community and lifestyle. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. https://doi.org/10.1126/science.1219033

    Article  CAS  PubMed  Google Scholar 

  • Rounce DR, Byers AC, Byers EA, McKinney DC (2017) Glacial outburst flood at Lhotse Glacier near mount Everst in. Cryosphere 11:443–449

    Article  Google Scholar 

  • Salerno F, Guyennon N, Thakuri S, Viviano G, Romano E, Vuillermoz E, Cristofanelli P, Stocchi P, Agrillo G, Ma Y, Tartar G (2015) Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere 9:1229–1247

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741

    Article  CAS  Google Scholar 

  • Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199:183–206

    Article  Google Scholar 

  • Singh SP, Thadani R (2015) Complexities and controversies in Himalayan research: a call for collaboration and rigor for better data. Mt Res Dev 35:401–409

    Article  CAS  Google Scholar 

  • Stone EA, Lough GC, Schauer JJ, Praveen PS, Corrigan CE, Ramanathan V (2007) Understanding the origin of black carbon in the atmospheric brown cloud over the Indian Ocean. J Geophys Res 112:D22S23. https://doi.org/10.1029/2006JD008118

    Article  Google Scholar 

  • Suwal MK, Shrestha KB, Guragain L, Shakya R, Shrestha K, Bhuju DR, Vetaas OR (2016) Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecol 217:993–1002

    Article  Google Scholar 

  • Tong D, Zhang Q, Davis SJ, Liu F, Zheng B, Geng G, Xue T, Li M, Hong C, Lu Z, Streets DG, Guan D, He K (2018) Targetted emissio reductions from global super-polluting power plant units. Nat Sustain 1:59–68

    Article  Google Scholar 

  • Torres A, Brandt J, Lear K, Liu J (2017) A looming tragedy of the Sand Commons. Science 357:970–971

    Article  CAS  Google Scholar 

  • Whiteman D (2000) Mountain meteorology. Oxford University Press, Oxford

    Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X et al (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Article  CAS  Google Scholar 

  • Xu J, Sharma R, Fang J, Xu Y (2012) Critical linkages between land-use transition and human health in the Himalayan region. Environ Int 34:239–247. https://doi.org/10.1016/j.envint.2007.08.004

    Article  CAS  Google Scholar 

  • Xuesong H, Guo Y, Mi C, Huettmann F, Wen L (2017) Machine learning model analysis of breeding habitats for the Blacknecked Crane in Central Asian uplands under Anthropogenic pressures. Sci Rep 7, Article number:6114 https://doi.org/10.1038/s41598-017-06167-2. https://www.nature.com/articles/s41598-017-06167-2

  • You J, Qin X, Ranjitkar S, Song Z et al (2018) Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-24360-9

  • Zhu J, Shukla J (2016) Estimation of weather noise in coupled ocean–atmosphere systems using initialized simulations. J Clim 29:5675–5688. https://doi.org/10.1175/JCLI-D-15-0737.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Huettmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huettmann, F. (2020). The Hindu Kush-Himalaya (HKH) Region in the Modern Global and Climate Context: Major Weather Systems, Monsoon, Asian Brown Clouds (ABCs), Digital Data/Models and Global Linkages of Telecoupling and Teleconnection all Affecting Global Human Well-Being. In: Regmi, G., Huettmann, F. (eds) Hindu Kush-Himalaya Watersheds Downhill: Landscape Ecology and Conservation Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-030-36275-1_2

Download citation

Publish with us

Policies and ethics