Skip to main content

Causal Discovery of Linear Non-Gaussian Acyclic Model with Small Samples

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11936))

  • 1718 Accesses

Abstract

Linear non-Gaussian Acyclic Model (LiNGAM) is a well-known model for causal discovery from observational data. Existing estimation methods are usually based on infinite sample theory and often fail to obtain an ideal result in the small samples. However, it is commonplace to encounter non-Gaussian data with small or medium sample sizes in practice. In this paper, we propose a Minimal Set-based LiNGAM algorithm (MiS-LiNGAM) to address the LiNGAM with small samples. MiS-LiNGAM is a two-phase and greedy search algorithm. Specifically, in the first phase, we find the skeleton of the network using the regression-based conditional independence test, which helps us reduce the complexity in finding the minimal LiNGAM set of the second phase. Further, this independence test we applied guarantees the reliability when the number of conditioning variables increases. In the second phase, we give an efficient method to iteratively select the minimal LiNGAM set with the skeleton and learn the causal network. We also present the corresponding theoretical derivation. The experimental results on simulated networks and real networks are presented to demonstrate the efficacy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Matlab package available at https://www.cs.helsinki.fi/u/ahyvarin/code/pwcausal/, Here, we adopt mxnt (maximum entropy approximations) to estimate the likelihood ratios in the Pairwise-LiNGAM algorithm.

  2. 2.

    Matlab package available at https://sites.google.com/site/sshimizu06/Dlingamcode.

  3. 3.

    Matlab package available at https://sites.google.com/site/sshimizu06/lingam.

References

  1. Spirtes, P., Glymour, C., Scheines, R., Tillman, R.: Automated search for causal relations: theory and practice (2010)

    Google Scholar 

  2. Pearl, J.: The seven tools of causal inference, with reflections on machine learning. Commun. ACM 62(3), 54–60 (2019)

    Article  Google Scholar 

  3. Lele, X., et al.: A pooling-lingam algorithm for effective connectivity analysis of fMRI data. Front. Comput. Neurosci. 8, 125 (2014)

    MathSciNet  Google Scholar 

  4. Sanchez-Romero, R., Ramsey, J.D., Zhang, K., Glymour, M.R.K., Huang, B., Glymour, C.: Estimating feedforward and feedback effective connections from fMRI time series: assessments of statistical methods. Netw. Neurosci. 3(2), 274–306 (2019)

    Article  Google Scholar 

  5. Zhang, K., Chan, L.: Minimal nonlinear distortion principle for nonlinear independent component analysis. J. Mach. Learn. Res. 9(Nov), 2455–2487 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Al-Yahyaee, K.H., Mensi, W., Al-Jarrah, I.M.W., Tiwari, A.K.: Testing for the Granger-causality between returns in the U.S and GIPSI stock markets. Phys. A: Stat. Mech. Appl. 531, 120950 (2019)

    Article  Google Scholar 

  7. Cai, R., Zhang, Z., Hao, Z., Winslett, M.: Understanding social causalities behind human action sequences. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1801–1813 (2016)

    Article  MathSciNet  Google Scholar 

  8. Helajärvi, H., Rosenström, T., et al.: Exploring causality between TV viewing and weight change in young and middle-aged adults. The cardiovascular risk in young finns study. PLoS One 9(7), e101860 (2014)

    Article  Google Scholar 

  9. Spirtes, P., Glymour, C.: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9(1), 62–72 (1991)

    Article  Google Scholar 

  10. Pearl, J., Verma, T.: A theory of inferred causation. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 441–452 (1991)

    Google Scholar 

  11. Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Shimizu, S.: LiNGAM: non-Gaussian methods for estimating causal structures. Behaviormetrika 41(1), 65–98 (2014)

    Article  Google Scholar 

  13. Shimizu, S.: Non-gaussian methods for causal structure learning. Prev. Sci. 20, 1–11 (2018)

    Google Scholar 

  14. Hoyer, P.O., Hyttinen, A.: Bayesian discovery of linear acyclic causal models. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 240–248. AUAI Press (2009)

    Google Scholar 

  15. Shimizu, S., et al.: DirectLiNGAM: a direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12(Apr), 1225–1248 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Hyvärinen, A., Smith, S.M.: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. J. Mach. Learn. Res. 14(Jan), 111–152 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Kagan, A.M., Rao, C.R., Linnik, Y.V.: Characterization problems in mathematical statistics (1973)

    Google Scholar 

  18. Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  19. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  21. Sogawa, Y., Shimizu, S., Shimamura, T., HyväRinen, A., Washio, T., Imoto, S.: Estimating exogenous variables in data with more variables than observations. Neural Netw. 24(8), 875–880 (2011)

    Article  MATH  Google Scholar 

  22. Cai, R., Zhang, Z., Hao, Z.: SADA: a general framework to support robust causation discovery. In: International Conference on Machine Learning, pp. 208–216 (2013)

    Google Scholar 

  23. Hyvärinen, A., Zhang, K., Shimizu, S., Hoyer, P.O.: Estimation of a structural vector autoregression model using non-gaussianity. J. Mach. Learn. Res. 11(May), 1709–1731 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-gaussian causal models with hidden variables. Int. J. Approx. Reason. 49(2), 362–378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shimizu, S., Bollen, K.: Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions. J. Mach. Learn. Res. 15(1), 2629–2652 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Loh, P.-L., Bühlmann, P.: High-dimensional learning of linear causal networks via inverse covariance estimation. J. Mach. Learn. Res. 15(1), 3065–3105 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Cai, R., Xie, F., Chen, W., Hao, Z.: An efficient kurtosis-based causal discovery method for linear non-Gaussian acyclic data. In 2017 IEEE/ACM 25th International Symposium on Quality of Service, pp. 1–6. IEEE (2017)

    Google Scholar 

  28. Hoyer, P.O., et al.: Causal discovery of linear acyclic models with arbitrary distributions. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 282–289. AUAI Press (2008)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the NSFC-Guangdong Joint Fund under Grant U1501254, in part by the Natural Science Foundation of China under Grant 61876043 and Grant 61472089, in part by the Natural Science Foundation of Guangdong under Grant 2014A030306004 and Grant 2014A030308008, in part by the Science and Technology Planning Project of Guangdong under Grant 2013B051000076, Grant 2015B010108006, and Grant 2015B010131015, in part by the Guangdong High-Level Personnel of Special Support Pro- gram under Grant 2015TQ01X140, in part by the Pearl River S&T Nova Program of Guangzhou under Grant 201610010101, and in part by the Science and Technology Planning Project of Guangzhou under Grant 201902010058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruichu Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, F., Cai, R., Zeng, Y., Hao, Z. (2019). Causal Discovery of Linear Non-Gaussian Acyclic Model with Small Samples. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Big Data and Machine Learning. IScIDE 2019. Lecture Notes in Computer Science(), vol 11936. Springer, Cham. https://doi.org/10.1007/978-3-030-36204-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36204-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36203-4

  • Online ISBN: 978-3-030-36204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics