Skip to main content

Feature Extraction of Hidden Oscillation in ECG Data via Multiple-FOD Method

  • Conference paper
  • First Online:
  • 1625 Accesses

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 43))

Abstract

Fourier transform (FT) is a non-parametric method which can be used to convert the time domain data into the frequency domain and can be used to find the periodicity of oscillations in time series datasets. In order to detect periodic-like outliers in time series data, a novel and promising method, named as the outlier detection via Fourier transform (FOD), has been developed. From our previous studies, it has been shown that FOD outperforms most of the commonly used approaches for the detection of outliers when the outliers have periodicity with low fold changes or high sample sizes. Recently, the multiple oscillation and hidden periodic-like pattern cases for time series data have been investigated and found that the multiple application of FOD, shortly multiple-FOD, can also be a successful method in the detection of such patterns. These empirical results are based on real electrocardiogram (ECG) data where the discrimination of disorders can be helpful for the diagnosis of certain heart diseases in advance. Hereby, in this study, we evaluate the performance of multiple-FOD in different types of simulated datasets which have distinct sample sizes, percentage of outliers and distinct hidden patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adhikari, A.: Video-analysis inference automated ECG (VID-ECG): improving video-based heart rate detection and exposing security risks of ECG-based biometric authentication. Ph.D. thesis, University of Illinois (2015)

    Google Scholar 

  2. Andreotti, F., Behar, J., Zaunseder, S., Oster, J., Clifford, G.D.: An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms. Physiol. Meas. 37(5), 627–648 (2016). https://doi.org/10.1088/0967-3334/37/5/627

    Article  Google Scholar 

  3. Arzeno, N.M.: Discriminating noise from chaos in heart rate variability: application to prognosis in heart failure. Ph.D. thesis, Massachusetts Institute of Technology (2007)

    Google Scholar 

  4. Behar, J., Andreotti, F., Zaunseder, S., Li, Q., Oster, J., Clifford, G.D.: An ECG simulator for generating maternal-foetal activity mixtures on abdominal ECG recordings. Physiol. Meas. 35(8), 1537–1550 (2014). https://doi.org/10.1088/0967-3334/35/8/1537

    Article  Google Scholar 

  5. Benitez, D.S., Gaydecki, P., Zaidi, A., Fitzpatrick, A.: A new QRS detection algorithm based on the Hilbert transform. In: Computers in Cardiology 2000 (Cat. 00CH37163), vol. 27, pp. 379–382. IEEE (2000)

    Google Scholar 

  6. Bennett, T.D., Combs, W.J., Kallok, M.J., Lee, B.B., Mehra, R., Klein, G.J.: Subcutaneous multi-electrode sensing system, method and pacer, US Patent 5,331,966, 26 July 1994

    Google Scholar 

  7. Brown, T.A., Barlow, D.H.: Comorbidity among anxiety disorders: implications for treatment and DSM-IV. J. Consult. Clin. Psychol. 60(6), 835 (1992)

    Article  Google Scholar 

  8. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016)

    Article  Google Scholar 

  9. Erkuş, E., Purutçuoğlu, V., Purutçuoğlu, E.: Detection of abnormalities in heart rate using multiple Fourier transforms. Int. J. Environ. Sci. Technol. 16, 5237–5242 (2019)

    Article  Google Scholar 

  10. Erkuş, E.C., Purutçuoğlu, V.: Detection of abnormalities in heart rate using multiple Fourier transforms. In: 5th International Conference on Computational and Experimental Science and Engineerins (ICCESEN2018) (2018)

    Google Scholar 

  11. Erkuş, E.C., Purutçuoğlu, V., Agraz, M.: Detection of outliers using Fourier transform. In: 10th International Statistics Congress (ISC2017) (2017)

    Google Scholar 

  12. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  13. Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R., Nagle, H.T.: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37(1), 85–98 (1990)

    Article  Google Scholar 

  14. Jalaleddine, S.M., Hutchens, C.G., Strattan, R.D., Coberly, W.A.: ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 37(4), 329–343 (1990)

    Article  Google Scholar 

  15. Kadambe, S., Murray, R., Boudreaux-Bartels, G.F.: Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46(7), 838–848 (1999)

    Article  Google Scholar 

  16. Liao, T.W.: Clustering of time series dataa survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  17. Marks, R.J.I.: Introduction to Shannon Sampling and Interpolation Theory. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  18. Moraes, J., Freitas, M., Vilani, F., Costa, E.: A QRS complex detection algorithm using electrocardiogram leads. In: Computers in Cardiology, pp. 205–208. IEEE (2002)

    Google Scholar 

  19. Oppenheim, A.V.: Discrete-Time Signal Processing. Pearson Education India, Chennai (1999)

    Google Scholar 

  20. Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36(4), 376–388 (2006)

    Article  Google Scholar 

  21. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  22. Pantelopoulos, A., Bourbakis, N.G.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(1), 1–12 (2010)

    Article  Google Scholar 

  23. Ritchie, J., Spencer, L.: Qualitative data analysis for applied policy research. Qual. Res. Companion 573(2002), 305–329 (2002)

    Google Scholar 

  24. Ruttimann, U.E., Pipberger, H.V.: Compression of the ECG by prediction or interpolation and entropy encoding. IEEE Trans. Biomed. Eng. 11, 613–623 (1979)

    Article  Google Scholar 

  25. Sansone, M., Fusco, R., Pepino, A., Sansone, C.: Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J. Healthc. Eng. 4(4), 465–504 (2013)

    Article  Google Scholar 

  26. Savalia, S., Acosta, E., Emamian, V.: Classification of cardiovascular disease using feature extraction and artificial neural networks. J Biosci. Med. 5(11), 64 (2017)

    Google Scholar 

  27. Scargle, J.D.: Studies in astronomical time series analysis. II-statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982)

    Article  Google Scholar 

  28. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Trans. Med. Imaging 25(5), 612–625 (2006)

    Article  Google Scholar 

  29. Slimane, Z.E.H., Naït-Ali, A.: QRS complex detection using empirical mode decomposition. Digit. Signal Process. 20(4), 1221–1228 (2010)

    Article  Google Scholar 

  30. Thiagarajan, S., Balleda, K.: HiBeat: a novel highly accurate implementation of cardiac pulse measurement on a multicore architecture. In: 2014 International Conference on High Performance Computing and Applications (ICHPCA), pp. 1–6. IEEE (2014)

    Google Scholar 

  31. Vehkaoja, A., Salpavaara, T., Verho, J., Lekkala, J.: EMFI material as wearable heart rate sensor for night time recordings. In: SENSORS, 2010 IEEE, pp. 145–149. IEEE (2010)

    Google Scholar 

  32. Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification Modelling. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilda Purutçuoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erkuş, E.C., Purutçuoğlu, V. (2020). Feature Extraction of Hidden Oscillation in ECG Data via Multiple-FOD Method. In: Hemanth, D., Kose, U. (eds) Artificial Intelligence and Applied Mathematics in Engineering Problems. ICAIAME 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-36178-5_5

Download citation

Publish with us

Policies and ethics