Skip to main content

An Aerial Robot Path Follower Based on the ‘Carrot Chasing’ Algorithm

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

Abstract

This paper presents a three-dimensional path follower implementation for an aerial robot based on the carrot-chasing algorithm. The main objective was to improve the performance of the position controller of the PX4 autopilot when following a list of waypoints. This autopilot is widely used in the aerial robotics community, but we needed to improve its performance for navigation in cluttered environments. Different simulations have been carried out under the ROS (Robotic Operating System) environment for the comparison between the position controller of the PX4 and the proposed path follower. In addition, we have implemented different modes to generate the path from the input list of waypoints that are also analyzed in our simulation environment.

This work is partially supported by the MULTIDRONE (H2020-ICT-731667) European project and the ARM-EXTEND (DPI2017-89790-R) Spanish project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/grvcTeam/grvc-ual.

  2. 2.

    https://www.ros.org/.

  3. 3.

    https://wiki.ros.org/mavros.

  4. 4.

    https://github.com/hecperleo/upat_follower/tree/robot19.

  5. 5.

    https://grvc.us.es/robot19path.

  6. 6.

    https://wiki.ros.org/rviz.

References

  1. Basilico, N., Carpin, S.: Deploying teams of heterogeneous UAVs in cooperative two-level surveillance missions. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 610–615. IEEE, September 2015. http://ieeexplore.ieee.org/document/7353435/

  2. Acevedo, J.J., Arrue, B.C., Maza, I., Ollero, A.: A decentralized algorithm for area surveillance missions using a team of aerial robots with different sensing capabilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4735–4740, May 2014. https://doi.org/10.1109/ICRA.2014.6907552

  3. Merino, L., Caballero, F., de Dios, J.M., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1), 533–548 (2012). https://doi.org/10.1007/s10846-011-9560-x

    Article  Google Scholar 

  4. Pham, H.X., La, H.M., Feil-Seifer, D., Deans, M.C.: A distributed control framework of multiple unmanned aerial vehicles for dynamic wildfire tracking. IEEE Trans. Syst. Man Cybern. Syst. 1–12 (2018). http://arxiv.org/abs/1803.07926, http://ieeexplore.ieee.org/document/8331947/

  5. Kondak, K., Ollero, A., Maza, I., Krieger, K., Albu-Schaeffer, A., Schwarzbach, M., Laiacker, M.: Unmanned aerial systems physically interacting with the environment: load transportation, deployment, and aerial manipulation, pp. 2755–2785. Springer, Netherlands (2015)

    Google Scholar 

  6. Sanchez-Cuevas, P.J., Ramon-Soria, P., Arrue, B., Ollero, A., Heredia, G.: Robotic system for inspection by contact of bridge beams using UAVs. Sensors 19(2) (2019). https://www.mdpi.com/1424-8220/19/2/305

    Article  Google Scholar 

  7. Yoder, L., Scherer, S.: Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Springer Tracts in Advanced Robotics, Springer Tracts in Advanced Robotics, vol. 113, pp. 427–440. Springer, Cham (2016)

    Google Scholar 

  8. Micaelli, A., Samson, C.: Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. Ph.D. thesis, INRIA (1993)

    Google Scholar 

  9. Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Technical report (1992)

    Google Scholar 

  10. Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Trans. Robot. 23(3), 519–529 (2007)

    Article  Google Scholar 

  11. Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. IFAC Proc. Volumes 36(21), 211–216 (2003)

    Article  Google Scholar 

  12. Sujit, P.B., Saripalli, S., Sousa, J.B.: An evaluation of UAV path following algorithms. In: 2013 European Control Conference (ECC), pp. 3332–3337, July 2013

    Google Scholar 

  13. Nunez, H.E., Flores, G., Lozano, R.: Robust path following using a small fixed-wing airplane for aerial research. In: 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015, pp. 1270–1278. Institute of Electrical and Electronics Engineers Inc. (2015)

    Google Scholar 

  14. Xavier, D.M., Natassya Silva, B.F., Branco, K.: Comparison of path-following algorithms for loiter paths of Unmanned Aerial Vehicles. In: Proceedings - IEEE Symposium on Computers and Communications, vol. 2018-June, pp. 1243–1248. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  15. Kothari, M., Postlethwaite, I., Gu, D.W.: A suboptimal path planning algorithm using rapidly-exploring random trees. Int. J. Aerosp. Innov. 2, 93–103 (2010)

    Article  Google Scholar 

  16. Real, F., Torres-Gonzalez, A., Ramon-Soria, P., Capitan, J., Ollero, A.: UAL: an abstraction layer for unmanned vehicles. In: 2nd International Symposium on Aerial Robotics (ISAR) (2018)

    Google Scholar 

  17. Millan-Romera, J.A., Perez-Leon, H., Castillejo-Calle, A., Maza, I., Ollero, A.: ROS-MAGNA, a ROS-based framework for the definition and management of multi-UAS cooperative missions. In: Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1–10. IEEE, June 2019

    Google Scholar 

  18. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source System (2009)

    Google Scholar 

  19. Meier, L., Camacho, J., Godbolt, B., Goppert, J., Heng, L., Lizarraga, M., et al.: MAVLink: micro air vehicle communication protocol. Tillgänglig: http://qgroundcontrol.org/mavlink/start. [Hämtad 2014-05-22] (2013)

  20. Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open source robotics framework for deeply embedded platforms. In: Proceedings - IEEE International Conference on Robotics and Automation (2015)

    Google Scholar 

  21. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a system for autonomous flight using onboard computer vision. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2992–2997. IEEE (2011)

    Google Scholar 

  22. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154, September 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Perez-Leon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perez-Leon, H., Acevedo, J.J., Millan-Romera, J.A., Castillejo-Calle, A., Maza, I., Ollero, A. (2020). An Aerial Robot Path Follower Based on the ‘Carrot Chasing’ Algorithm. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_4

Download citation

Publish with us

Policies and ethics