Advertisement

An Aerial Robot Path Follower Based on the ‘Carrot Chasing’ Algorithm

  • Hector Perez-LeonEmail author
  • Jose Joaquin Acevedo
  • Jose A. Millan-Romera
  • Alejandro Castillejo-Calle
  • Ivan Maza
  • Anibal Ollero
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)

Abstract

This paper presents a three-dimensional path follower implementation for an aerial robot based on the carrot-chasing algorithm. The main objective was to improve the performance of the position controller of the PX4 autopilot when following a list of waypoints. This autopilot is widely used in the aerial robotics community, but we needed to improve its performance for navigation in cluttered environments. Different simulations have been carried out under the ROS (Robotic Operating System) environment for the comparison between the position controller of the PX4 and the proposed path follower. In addition, we have implemented different modes to generate the path from the input list of waypoints that are also analyzed in our simulation environment.

Keywords

Aerial robotics Path following Carrot chasing algorithm 

References

  1. 1.
    Basilico, N., Carpin, S.: Deploying teams of heterogeneous UAVs in cooperative two-level surveillance missions. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 610–615. IEEE, September 2015. http://ieeexplore.ieee.org/document/7353435/
  2. 2.
    Acevedo, J.J., Arrue, B.C., Maza, I., Ollero, A.: A decentralized algorithm for area surveillance missions using a team of aerial robots with different sensing capabilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4735–4740, May 2014.  https://doi.org/10.1109/ICRA.2014.6907552
  3. 3.
    Merino, L., Caballero, F., de Dios, J.M., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1), 533–548 (2012).  https://doi.org/10.1007/s10846-011-9560-xCrossRefGoogle Scholar
  4. 4.
    Pham, H.X., La, H.M., Feil-Seifer, D., Deans, M.C.: A distributed control framework of multiple unmanned aerial vehicles for dynamic wildfire tracking. IEEE Trans. Syst. Man Cybern. Syst. 1–12 (2018). http://arxiv.org/abs/1803.07926, http://ieeexplore.ieee.org/document/8331947/
  5. 5.
    Kondak, K., Ollero, A., Maza, I., Krieger, K., Albu-Schaeffer, A., Schwarzbach, M., Laiacker, M.: Unmanned aerial systems physically interacting with the environment: load transportation, deployment, and aerial manipulation, pp. 2755–2785. Springer, Netherlands (2015)Google Scholar
  6. 6.
    Sanchez-Cuevas, P.J., Ramon-Soria, P., Arrue, B., Ollero, A., Heredia, G.: Robotic system for inspection by contact of bridge beams using UAVs. Sensors 19(2) (2019). https://www.mdpi.com/1424-8220/19/2/305CrossRefGoogle Scholar
  7. 7.
    Yoder, L., Scherer, S.: Autonomous exploration for infrastructure modeling with a micro aerial vehicle. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Springer Tracts in Advanced Robotics, Springer Tracts in Advanced Robotics, vol. 113, pp. 427–440. Springer, Cham (2016)Google Scholar
  8. 8.
    Micaelli, A., Samson, C.: Trajectory tracking for unicycle-type and two-steering-wheels mobile robots. Ph.D. thesis, INRIA (1993)Google Scholar
  9. 9.
    Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Technical report (1992)Google Scholar
  10. 10.
    Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for miniature air vehicles. IEEE Trans. Robot. 23(3), 519–529 (2007)CrossRefGoogle Scholar
  11. 11.
    Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. IFAC Proc. Volumes 36(21), 211–216 (2003)CrossRefGoogle Scholar
  12. 12.
    Sujit, P.B., Saripalli, S., Sousa, J.B.: An evaluation of UAV path following algorithms. In: 2013 European Control Conference (ECC), pp. 3332–3337, July 2013Google Scholar
  13. 13.
    Nunez, H.E., Flores, G., Lozano, R.: Robust path following using a small fixed-wing airplane for aerial research. In: 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015, pp. 1270–1278. Institute of Electrical and Electronics Engineers Inc. (2015)Google Scholar
  14. 14.
    Xavier, D.M., Natassya Silva, B.F., Branco, K.: Comparison of path-following algorithms for loiter paths of Unmanned Aerial Vehicles. In: Proceedings - IEEE Symposium on Computers and Communications, vol. 2018-June, pp. 1243–1248. Institute of Electrical and Electronics Engineers Inc. (2018)Google Scholar
  15. 15.
    Kothari, M., Postlethwaite, I., Gu, D.W.: A suboptimal path planning algorithm using rapidly-exploring random trees. Int. J. Aerosp. Innov. 2, 93–103 (2010)CrossRefGoogle Scholar
  16. 16.
    Real, F., Torres-Gonzalez, A., Ramon-Soria, P., Capitan, J., Ollero, A.: UAL: an abstraction layer for unmanned vehicles. In: 2nd International Symposium on Aerial Robotics (ISAR) (2018)Google Scholar
  17. 17.
    Millan-Romera, J.A., Perez-Leon, H., Castillejo-Calle, A., Maza, I., Ollero, A.: ROS-MAGNA, a ROS-based framework for the definition and management of multi-UAS cooperative missions. In: Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1–10. IEEE, June 2019Google Scholar
  18. 18.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source System (2009)Google Scholar
  19. 19.
    Meier, L., Camacho, J., Godbolt, B., Goppert, J., Heng, L., Lizarraga, M., et al.: MAVLink: micro air vehicle communication protocol. Tillgänglig: http://qgroundcontrol.org/mavlink/start. [Hämtad 2014-05-22] (2013)
  20. 20.
    Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open source robotics framework for deeply embedded platforms. In: Proceedings - IEEE International Conference on Robotics and Automation (2015)Google Scholar
  21. 21.
    Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a system for autonomous flight using onboard computer vision. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2992–2997. IEEE (2011)Google Scholar
  22. 22.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–2154, September 2004Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hector Perez-Leon
    • 1
    Email author
  • Jose Joaquin Acevedo
    • 1
  • Jose A. Millan-Romera
    • 1
  • Alejandro Castillejo-Calle
    • 1
  • Ivan Maza
    • 1
  • Anibal Ollero
    • 1
  1. 1.Robotics, Vision and Control GroupUniversity of SevilleSevillaSpain

Personalised recommendations