Advertisement

Modular Dual-Arm Robot for Precision Harvesting

  • Eduardo NavasEmail author
  • Roemi Fernández
  • Delia Sepúlveda
  • Manuel Armada
  • Pablo Gonzalez-de-Santos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)

Abstract

Robotics for selective harvesting is a promising emergent technology for decreasing cost of labour and improving profitability in precision agriculture. In order to contribute to advance the research in this field, this paper addresses the design of a dual-arm harvesting robot. The objective of the design was to achieve a modular torso that can be adapted to different types of plants, thus being able to vary its workspace in order to optimise harvesting. The torso holds a particular dual-arm robot system with 12 DoF, but its adaptability also allows implementing other types of arms. In addition, the torso has a variable z-axis as a support for vision cameras, which can be moved along this axis to improve image acquisition.

Keywords

Dual-Arm robot system Harvesting robot Torso Modularity and adaptability 

Notes

Acknowledgments

The research leading to these results has received funding from:

(i) FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/Proyecto ROBOCROP (DPI2017-84253-C2-1-R).

(ii) RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU.

References

  1. 1.
    United Nations Department of Economic and Social Affairs. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables (2015)Google Scholar
  2. 2.
    Yael, E., Gaines, E.M.: Systems engineering of agricultural robot design. IEEE Trans. Syst. Man Cybern. 24, 1259–1265 (1994)CrossRefGoogle Scholar
  3. 3.
    Mehta, S.S., Burks, T.F.: Vision-based control of robotic manipulator for citrus harvesting. Comput. Electron. Agric. 102, 146–158 (2014)CrossRefGoogle Scholar
  4. 4.
    Davidson, J.R., Silwal, A., Hohimer, C.J., Karkee, M., Mo, C., Zhang, Q.: Proof-of-concept of a robotic apple harvester. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 634–639 (2016)Google Scholar
  5. 5.
    Van Henten, E.J., Hemming, J., Van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., Van Os, E.A.: An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robots 13, 241–258 (2002)CrossRefGoogle Scholar
  6. 6.
    Li, Z., Li, P., Yang, H., Wang, Y.: Stability tests of two-finger tomato grasping for harvesting robots. Biosys. Eng. 116, 163–170 (2013)CrossRefGoogle Scholar
  7. 7.
    Bac, C.W., Hemming, J., van Tuijl, B.A.J., Barth, R., Wais, E., van Henten, E.J.: Performance evaluation of a harvesting robot for sweet pepper. J. Field Robot. 34(6), 1123–1139 (2017)CrossRefGoogle Scholar
  8. 8.
    Lehnert, C., English, A., McCool, C., Tow, A., Perez, T.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett. 2(2), 872–879 (2017)CrossRefGoogle Scholar
  9. 9.
    Cubero, S., Diago, M.P., Blasco, J., Tardáguila, J., Millán, B., Aleixos, N.: A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosys. Eng. 117, 62–72 (2014)CrossRefGoogle Scholar
  10. 10.
    Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M.: Evaluation of a strawberry-harvesting robot in a field test. Biosys. Eng. 105(2), 160–171 (2010)CrossRefGoogle Scholar
  11. 11.
    Zion, B., Mann, M., Levin, D., Shilo, A., Rubinstein, D., Shmulevich, I.: Harvest-order planning for a multiarm robotic harvester. Comput. Electron. Agric. 103, 75–81 (2014)CrossRefGoogle Scholar
  12. 12.
    Bak, T., Jakobsen, H.: Agricultural Robotic Platform with Four Wheel Steering for Weed Detection. Biosys. Eng. 87, 125–136 (2004)CrossRefGoogle Scholar
  13. 13.
    Baerveldt, A.: An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robots 13, 21–35 (2002)CrossRefGoogle Scholar
  14. 14.
    Zhao, Y., Gong, L., Liu, C., Huang, Y.: Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-PapersOnLine 49(16), 161–165 (2016)CrossRefGoogle Scholar
  15. 15.
    Tabile, R.A., Godoy, E.P., Pereira, R.R.D., Tangerino, G.T., Porto, A.J.V., Inamasu, R.Y.: Design and development of the architecture of an agricultural mobile robot. Engharia Agrícola 31, 130–142 (2011)CrossRefGoogle Scholar
  16. 16.
    Agostini, A., Alenyà, G., Fischbach, A., Scharr, H., Wörgötter, F., Torras, C.: A cognitive architecture for automatic gardening. Comput. Electron. Agric. 138, 69–79 (2017)CrossRefGoogle Scholar
  17. 17.
    Font, D., Pallejà, T., Tresanchez, M., Runcan, D., Moreno, J., Martínez, D., Teixidó, M., Palacín, J.: A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm. Sensors 14(7), 11557–11579 (2014)CrossRefGoogle Scholar
  18. 18.
    Blanes, C., Mellado, M., Ortiz, C., Valera, A.: Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Span. J. Agric. Res. 9(4), 1130–1141 (2011)CrossRefGoogle Scholar
  19. 19.
    Hwan, H., Kim, C.S., Park, D.Y.: Development of multi-functional tele-operative modular robotic system for watermelon cultivation in greenhouse. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, Kobe, Japan, vol. 2, pp. 1344–1349 (2003)Google Scholar
  20. 20.
    Madsen, T.: Mobile robot for weeding. Unpublished MSc. thesis Danish Technical University (2001)Google Scholar
  21. 21.
    Campeau-Lecours, A., Lamontagne, H., Latour, S., Fauteux, P., Maheu, V., Boucher, F., Deguire, C., L’Ecuyer, L.-J.C.: Kinova modular robot arms for service robotics applications. Int. J. Robot. Appl. Technol. 5, 49–71 (2017)Google Scholar
  22. 22.
    Salinas, C., Fernández, R., Montes, H., Armada, M.: A new approach for combining time-of-flight and RGB cameras based on depth-dependent planar projective transformations. Sensors 15, 24615–24643 (2015)CrossRefGoogle Scholar
  23. 23.
    Fernández, R., Salinas, C., Montes, H., Sarria, J.: Multisensory system for fruit harvesting robots. Experimental testing in natural scenarios and with different kinds of crops. Sensors 14, 23885–23904 (2014)CrossRefGoogle Scholar
  24. 24.
    Tsarouchi, P., Makris, S., Michalos, G., Stefos, M., Fourtakas, K., Kaltsoukalas, K., Kontrovrakis, D., Chryssolouris, G.: Robotized assembly process using dual arm robot. Procedia CIRP 23, 47–52 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Eduardo Navas
    • 1
    Email author
  • Roemi Fernández
    • 1
  • Delia Sepúlveda
    • 1
  • Manuel Armada
    • 1
  • Pablo Gonzalez-de-Santos
    • 1
  1. 1.Centre for Automation and Robotics (UPM-CSIC)Spanish National Research CouncilArganda del ReySpain

Personalised recommendations