Skip to main content

Convolution and Anti-Wick Quantisation on Ultradistribution Spaces

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 550 Accesses

Abstract

We present recent advances in convolution theory for the quasi-analytic and non quasi-analytic ultradistribution spaces and generalised Gelfand-Shilov spaces. Additionally, we consider the existence of convolution of non-quasianalytic ultradistribution with the Gaussian kernel \(e^{s|x|{ }^2}\), \(s\in \mathbb R\backslash \{0\}\), and identify the largest subspace of non-quasi-analytic ultradistributions for which this convolution exists. This gives a way to extend the definition of Anti-Wick quantisation for symbols that are not necessarily tempered ultradistributions. Finally, we discuss convolution in quasi-analytic classes with \(e^{s|\cdot |{ }^q}\), q > 1, \(s\in \mathbb R\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    here and throughout the rest of the article we apply the principle of vacuous products, i.e. \(\prod _{j=1}^0l_j=1\).

References

  1. C. Bargetz, N. Ortner, Convolution of vector-valued distributions: a survey and comparison, Dissertationes Math.495 (2013) 1–51.

    Article  MathSciNet  Google Scholar 

  2. N. Bourbaki, Intégration, Ch. 7, 8: Mesure de Haar; convolution et représentation, Hermann, Paris, 1963.

    Google Scholar 

  3. M. Cappiello, Fourier integral operators of infinite order and applications to SG-hyperbolic equations, Tsukuba J. Math.28 (2004), 311–361.

    Article  MathSciNet  Google Scholar 

  4. M. Cappiello, Fourier integral operators and Gelfand-Shilov spaces, In Recent Advances in Operator Theory and its Applications, 2005 (pp. 81–100), Birkhäuser Basel.

    Google Scholar 

  5. M. Cappiello, S. Pilipović, B. Prangoski, Parametrices and hypoellipticity for pseudodifferential operators on spaces of tempered ultradistributions, J. Pseudo-Differ. Oper. Appl.5 (2014), 491–506.

    Article  MathSciNet  Google Scholar 

  6. M. Cappiello, S. Pilipović, B. Prangoski, Semilinear pseudodifferential equations in spaces of tempered ultradistributions, J. Math. Anal. Appl.442 (2016), 317–338.

    Article  MathSciNet  Google Scholar 

  7. R. Carmichael, A. Kamiński, S. Pilipović, Boundary Values and Convolution in Ultradistribution Spaces, World Scientific Publishing Co. Pte. Ltd., 2007.

    Book  Google Scholar 

  8. A. Debrouwere, J. Vindas, Topological properties of convolutor spaces via the short-time Fourier transform, preprint, arXiv:1801.09246

    Google Scholar 

  9. A. Debrouwere, J. Vindas, On weighted inductive limits of spaces of ultradifferentiable functions and their duals, Math. Nachr.292 (2019), 573–602.

    Article  MathSciNet  Google Scholar 

  10. P. Dierolf, S. Dierolf, Topological properties of the dual pair \(\langle \dot {\mathcal {B}}(\varOmega )', \dot {\mathcal {B}}(\varOmega )''\rangle \), Pac. J. Math.108 (1983), 51–82.

    Google Scholar 

  11. P. Dierolf, J. Voigt, Convolution and \(\mathcal {S}'\)-convolution of distributions, Collect. Math.29 (1978), 185–196.

    MathSciNet  MATH  Google Scholar 

  12. P. Dimovski, S. Pilipovic, J. Vindas, New distribution spaces associated to translation-invariant Banach spaces, Monatsh. Math.177 (2015), 495–515.

    Article  MathSciNet  Google Scholar 

  13. P. Dimovski, S. Pilipović, B. Prangoski, J. Vindas, Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces, Kyoto J. Math.56 (2016), 401–440.

    Article  MathSciNet  Google Scholar 

  14. P. Dimovski, S. Pilipović, B. Prangoski, J. Vindas, Translation-Modulation Invariant Banach Spaces of Ultradistributions, J. Fourier Anal. Appl.25 (2019), 819–841. https://doi.org/10.1007/s00041-018-9610-x

    Article  MathSciNet  Google Scholar 

  15. P. Dimovski, B. Prangoski, J. Vindas, On a class of translation-invariant spaces of quasianalytic ultradistributions, Novi Sad J. Math.45 (2015), 143–175.

    MathSciNet  MATH  Google Scholar 

  16. A. Kamiński, D. Kovačević, S. Pilipović, The equivalence of various defnitions of the convolution of ultradistributions, Trudy Mat. Inst. Steklov203 (1994), 307–322

    MATH  Google Scholar 

  17. H. Komatsu, Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math.20 (1973), 25–105.

    MathSciNet  Google Scholar 

  18. H. Komatsu, Ultradistributions, II: The kernel theorem and ultradistributions with support in submanifold, J. Fac. Sci. Univ. Tokyo, Sect. IA Math.24 (1977), 607–628.

    MathSciNet  MATH  Google Scholar 

  19. H. Komatsu, Ultradistributions, III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo, Sect. IA Math.29 (1982), 653–717.

    MathSciNet  MATH  Google Scholar 

  20. F. Nicola, L. Rodino, Global Psedo-Differential Calculus on Euclidean Spaces, Vol. 4. Birkhäuser Basel, 2010.

    Google Scholar 

  21. N. Ortner, On convolvability conditions for distributions, Monatsh. Math.160 (2010), 313–335.

    Article  MathSciNet  Google Scholar 

  22. N. Ortner, P. Wagner, Distribution-Valued Analytic Functions - Theory and Applications, edition swk, Hamburg, 2013.

    Google Scholar 

  23. S. Pilipović, On the convolution in the space of Beurling ultradistributions, Comment. Math. Univ. St. Paul40 (1991), 15–27.

    MathSciNet  MATH  Google Scholar 

  24. S. Pilipović, Characterizations of bounded sets in spaces of ultradistributions, Proc. Amer. Math. Soc.120 (1994), no. 4, 1191–1206.

    Article  MathSciNet  Google Scholar 

  25. S. Pilipović, B. Prangoski, On the convolution of Roumieu ultradistributions through the 𝜖 tensor product, Monatsh. Math.173 (2014), 83–105.

    Article  MathSciNet  Google Scholar 

  26. S. Pilipović, B. Prangoski, Anti-Wick and Weyl quantization on ultradistribution spaces, J. Math. Pures Appl.103 (2015), 472–503.

    Article  MathSciNet  Google Scholar 

  27. S. Pilipović, B. Prangoski, Complex powers for a class of infinite order hypoelliptic operators, Dissertationes Math.529 (2018), 1–58.

    Article  MathSciNet  Google Scholar 

  28. S. Pilipović, B. Prangoski, J. Vindas, Spectral asymptotics for infinite order pseudo-differential operators, Bull. Math. Sci.8 (2018), 81–120.

    Article  MathSciNet  Google Scholar 

  29. S. Pilipović, B. Prangoski, J. Vindas, On quasianalytic classes of Gelfand Shilov type. Parametrix and convolution, J. Math. Pures Appl.116 (2018), 174–210.

    Article  MathSciNet  Google Scholar 

  30. B. Prangoski, Laplace transform in spaces of ultradistributions, Filomat27 (2013), 747–760.

    Article  MathSciNet  Google Scholar 

  31. B. Prangoski, Pseudodifferential operators of infinite order in spaces of tempered ultradistributions, J. Pseudo-Differ. Oper. Appl.4 (2013), 495–549.

    Article  MathSciNet  Google Scholar 

  32. L. Schwartz, Théorie des distributions á valeurs vectorielles. I, Ann. Inst. Fourier7 (1957), 1–141.

    Article  MathSciNet  Google Scholar 

  33. R. Shiraishi, On the definition of convolution for distributions, J. Sci. Hiroshima Univ. Ser. A23 (1959), 19–32.

    Article  MathSciNet  Google Scholar 

  34. M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer Verlag, 2001.

    Google Scholar 

  35. P. Wagner, Zur Faltung von Distributionen, Math. Ann.276 (1987), 467–485.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Stevan Pilipović was supported by the Ministry of Education and Science, Republic of Serbia, project no. 174024.

The work of B. Prangoski was partially supported by the bilateral project “Microlocal analysis and applications” funded by the Macedonian and Serbian academies of sciences and arts.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilipović, S., Prangoski, B. (2020). Convolution and Anti-Wick Quantisation on Ultradistribution Spaces. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_22

Download citation

Publish with us

Policies and ethics