Skip to main content

Carleman Regularization and Hyperfunctions

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 549 Accesses

Abstract

Carleman regularization is a method to give a meaning to Fourier-type integrals which are highly divergent in a classical sense. We use it to give a local representation of hyperfunctions in terms of such integrals. While such representations are not unique, uniqueness can be achieved in terms of Dolbeault type cohomology with coefficients in L 2 spaces with weights.

Dedicated to Luigi Rodino on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Björk,J.E.: Rings of differential operators, North-Holland Mathematical Library, vol:21, North-Holland Publishing Co., Amsterdam-New York,

    Google Scholar 

  2. Carleman,T., L’intégrale de Fourier et questions qui s’y rattachent. Lecons Professéss à l’Insitut Mittag Leffler, Almqvist Wiksells Boktryckeri, 1944, 119 pp.

    Google Scholar 

  3. Ehrenpreis,L.: Fourier Analysis in several complex variables. Wiley-Interscience, New York, 1970. pp.xiii+506.

    Google Scholar 

  4. Hansen,S.: Localizable analytically uniform spaces and the fundamental principle. Trans. Amer. Math. Soc. 264 (1981), 235–250.

    Google Scholar 

  5. Hörmander,L.: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., vol.24 (1971), 671–704.

    Google Scholar 

  6. Hörmander,L.: Fourier integral .Hörmander, Lars. Fourier integral operators. I. Acta Math. 127 (1971), no. 1–2, 79–183.

    Google Scholar 

  7. Hörmander,L.: An introduction to complex analysis in several variables. North-Holland Publ. Comp., Amsterdam-London, 3-rd revised printing, 1990.

    Google Scholar 

  8. Kaneko,A.: Fundamental principle and extension of solutions of partial differential equations with constant coefficients. Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Vol. 287. pp. 122–134.

    Google Scholar 

  9. Kaneko,A.: Introduction to hyperfunctions, Mathematics and its Applications (Japanese Series) Mathematics and its Applications (Japanese Series), vol. 3,1988, pp. xiv+458.

    Google Scholar 

  10. Kato,G. and Struppa,D.C.: Fundamentals of algebraic microlocal analysis. Monographs and Textbooks in Pure and Applied Mathematics, vo. 217, Marcel Dekker, Inc., New York, 1999, xii+296 pp.

    Google Scholar 

  11. Kiselman,C.O.: Generalized Fourier transformations: the work of Bochner and Carleman viewed in the light of the theories of Schwartz and Sato, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, pp 166–185.

    Google Scholar 

  12. Martineau,A.: Distributions et valeurs au bord des fonctions holomorphes. Theory of Distributions (Proc. Internat. Summer Inst., Lisbon, 1964), Inst. Gulbenkian Ci., Lisbon, 1964, pp. 193–326.

    Google Scholar 

  13. Palamodov,V.P.: Linear differential operators with constant coefficients. (Russian), Moscow, 1967, English version by Springer-Verlag, Grundlehren der Math. Wissenschaften, vol.168. (1970).

    Google Scholar 

  14. Sato,M.: Hyperfunctions and differential equations. Proc. Intern. Conf. on Functional Analysis, Tokyo, 1969, Univ. Tokyo Press,1970.

    Google Scholar 

  15. Sato,M.: Regularity of hyperfunctions solutions of partial differential equations, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris 1971,pp 785–794.

    Google Scholar 

  16. Tillmann, H.G.: Distributionen als Randverteilungen analytischer Funktionen. II. Math. Z. 76 (1961) 5–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Liess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liess, O. (2020). Carleman Regularization and Hyperfunctions. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_18

Download citation

Publish with us

Policies and ethics