Skip to main content

Localization of a Class of Muckenhoupt Weights by Using Mellin Pseudo-Differential Operators

  • Chapter
  • First Online:
Advances in Microlocal and Time-Frequency Analysis

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Let Γ be a finite or infinite interval of \(\mathbb R\), p ∈ (1, ), and let w ∈ A p( Γ) be a Muckenhoupt weight. Relations of the weighted singular integral operator \(wS_{\mathbb{R}_+}w^{-1}I\) on the space \(L^p(\mathbb{R}_{+})\) and Mellin pseudo-differential operators with non-regular symbols are studied. A localization of a class of Muckenhoupt weights to power weights at finite endpoints of Γ, which is related to the Allan-Douglas local principle, is obtained by using quasicontinuous functions and Mellin pseudo-differential operators with non-regular symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Bastos, C.A. Fernandes, and Yu.I. Karlovich, C -algebras of integral operators with piecewise slowly oscillating coefficients and shifts acting freely. Integral Equations and Operator Theory 55 (2006), 19–67.

    Article  MathSciNet  Google Scholar 

  2. M.A. Bastos, Yu.I. Karlovich, and B. Silbermann, Toeplitz operators with symbols generated by slowly oscillating and semi-almost periodic matrix functions. Proc. London Math. Soc. (3) 89 (2004), 697–737.

    Google Scholar 

  3. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction. Springer, Berlin, 1976.

    Google Scholar 

  4. A. Böttcher, I. Gohberg, Yu. Karlovich, N. Krupnik, S. Roch, B. Silbermann, and I. Spitkovsky, Banach algebras generated by N idempotents and applications. Operator Theory: Advances and Applications 90 (1996), 19–54.

    MathSciNet  MATH  Google Scholar 

  5. A. Böttcher and Yu.I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators. Progress in Mathematics 154, Birkhäuser, Basel, 1997.

    Google Scholar 

  6. A. Böttcher, Yu.I. Karlovich, and V.S. Rabinovich, Mellin pseudo-differential operators with slowly varying symbols and singular integral on Carleson curves with Muckenhoupt weights. Manuscripta Math. 95 (1998), 363–376.

    Article  MathSciNet  Google Scholar 

  7. A. Böttcher, Yu.I. Karlovich, and V.S. Rabinovich, The method of limit operators for one-dimensional singular integrals with slowly oscillating data. J. Operator Theory 43 (2000), 171–198.

    MathSciNet  MATH  Google Scholar 

  8. A. Böttcher, S. Roch, B. Silbermann, and I.M. Spitkovsky, A Gohberg-Krupnik-Sarason symbol calculus for algebras of Toeplitz, Hankel, Cauchy, and Carleman operators. Operator Theory: Advances and Applications 48 (1990), 189–234.

    MathSciNet  MATH  Google Scholar 

  9. A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators. 2nd edition, Springer, Berlin, 2006.

    MATH  Google Scholar 

  10. A. Böttcher and I.M. Spitkovsky, Toeplitz Operators with PQC Symbols on Weighted Hardy Spaces. J. Funct. Anal. 97 (1991), 194–214.

    Article  MathSciNet  Google Scholar 

  11. A. Böttcher and I.M. Spitkovsky, The factorization problem: Some known results and open questions. Operator Theory: Advances and Applications 229 (2013), 101–122.

    MathSciNet  MATH  Google Scholar 

  12. F. Cobos, T. Kühn, and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors. J. Funct. Anal. 106 (1992), 274–313.

    Article  MathSciNet  Google Scholar 

  13. M. Cwikel, Real and complex interpolation and extrapolation of compact operators. Duke Math. J. 65 (1992), no. 2, 333–343.

    Article  MathSciNet  Google Scholar 

  14. R.G. Douglas, Banach Algebra Techniques in Operator Theory. Academic Press, New York, 1972.

    MATH  Google Scholar 

  15. J.B. Garnett, Bounded Analytic Functions. Academic Press, New York, 1981.

    MATH  Google Scholar 

  16. I. Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equations. Vols. I and II. Birkhäuser, Basel, 1992.

    Google Scholar 

  17. P. Hartman, On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9 (1958), 862–866.

    Article  MathSciNet  Google Scholar 

  18. A.Yu. Karlovich, Yu.I. Karlovich, and A.B. Lebre, Invertibility of functional operators with slowly oscillating non-Carleman shifts. Operator Theory: Advances and Applications 142 (2003), 147–174.

    MathSciNet  MATH  Google Scholar 

  19. Yu.I. Karlovich, An algebra of pseudodifferential operators with slowly oscillating symbols. Proc. London Math. Soc. (3) 92 (2006), 713–761.

    Google Scholar 

  20. Yu.I. Karlovich, Pseudodifferential operators with compound slowly oscillating symbols. Operator Theory: Advances and Applications 171 (2007), 189–224.

    MathSciNet  MATH  Google Scholar 

  21. Yu.I. Karlovich, Nonlocal singular integral operators with slowly oscillating data. Operator Theory: Advances and Applications 181 (2008), 229–261.

    MathSciNet  MATH  Google Scholar 

  22. Yu.I. Karlovich and I. Loreto Hernández, Algebras of convolution type operators with piecewise slowly oscillating data. I: Local and structural study. Integral Equations and Operator Theory 74 (2012), 377–415.

    Article  MathSciNet  Google Scholar 

  23. Yu.I. Karlovich and I. Loreto Hernández, Algebras of convolution type operators with piecewise slowly oscillating data. II: Local spectra and Fredholmness. Integral Equations and Operator Theory 75 (2013), 49–86.

    Article  MathSciNet  Google Scholar 

  24. Yu.I. Karlovich and I. Loreto Hernández, On convolution type operators with piecewise slowly oscillating data. Operator Theory: Advances and Applications 228 (2013), 185–207.

    MathSciNet  MATH  Google Scholar 

  25. Yu.I. Karlovich and E. Ramírez de Arellano, Singular integral operators with fixed singularities on weighted Lebesgue spaces. Integral Equations and Operator Theory 48 (2004), 331–363.

    Article  MathSciNet  Google Scholar 

  26. M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik, and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions. Nauka, Moscow, 1966 (Russian); English transl.: Noordhoff I.P., Leyden, 1976.

    Google Scholar 

  27. M.A. Naimark, Normed Algebras. Wolters-Noordhoff, Groningen, 1972.

    Google Scholar 

  28. S.C. Power, Hankel Operators on Hilbert Space. Bull. London Math. Soc. 12 (1980), 422–442.

    Article  MathSciNet  Google Scholar 

  29. S.C. Power, Hankel Operators on Hilbert Spaces. Pitman Research Notes in Math. 64. Pitman, Boston, 1982.

    Google Scholar 

  30. S. Roch, P.A. Santos, and B. Silbermann, Non-commutative Gelfand Theories. A Tool-kit for Operator Theorists and Numerical Analysts. Springer, London, 2011.

    Google Scholar 

  31. D. Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391–405.

    Article  MathSciNet  Google Scholar 

  32. D. Sarason, Toeplitz operators with piecewise quasicontinuous symbols. Indiana Univ. Math. J. 26 (1977), 817–838.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Karlovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karlovich, Y.I. (2020). Localization of a Class of Muckenhoupt Weights by Using Mellin Pseudo-Differential Operators. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_17

Download citation

Publish with us

Policies and ethics