Skip to main content

Integrating Gauge Fields in the ζ-Formulation of Feynman’s Path Integral

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In recent work by the authors, a connection between Feynman’s path integral and Fourier integral operator ζ-functions has been established as a means of regularizing the vacuum expectation values in quantum field theories. However, most explicit examples using this regularization technique to date, do not consider gauge fields in detail. Here, we address this gap by looking at some well-known physical examples of quantum fields from the Fourier integral operator ζ-function point of view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. G. Beneventano and E. M. Santangelo. Effective action for QED4 through ζ-function regularization. J. Math. Phys.42 (2001), 3260–3269.

    Article  MathSciNet  Google Scholar 

  2. S. K. Blau, M. Visser, and A. Wipf. Analytic results for the effective action. Int. J. Mod. Phys.A6 (1991), 5409–5433.

    Article  MathSciNet  Google Scholar 

  3. M. Bordag, E. Elizalde, and K. Kirsten. Heat kernel coefficients of the Laplace operator on the D-dimensional ball. J. Math. Phys.37, 895 (1996).

    Article  MathSciNet  Google Scholar 

  4. A. A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, and S. Zerbini. Analytic Aspects of Quantum Fields. World Scientific Publishing (2003).

    Google Scholar 

  5. L. Culumovic, M. Leblanc, R. B. Mann, D. G. C. McKeon, and T. N. Sherry. Operator regularization and multiloop Green’s functions. Phys. Rev. D41 (1990), 514

    Article  Google Scholar 

  6. J. S. Dowker and R. Critchley. Effective Lagrangian and energy-momentum tensor in de Sitter space. Phys. Rev. D13 (1976), 3224.

    Article  Google Scholar 

  7. E. Elizalde. Explicit zeta functions for bosonic and fermionic fields on a non-commutative toroidal spacetime. J. Phys. A34 (2001), 3025–3035.

    Article  MathSciNet  Google Scholar 

  8. E. Elizalde. Ten Physical Applications of Spectral Zeta Functions. 2nd Ed., Lecture Notes in Physics, vol 855, Springer (2012).

    Google Scholar 

  9. E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini. Zeta Regularization Techniques With Applications. World Scientific Publishing (1994).

    Google Scholar 

  10. E. Elizalde, L. Vanzo, and S. Zerbini. Zeta-Function Regularization, the Multiplicative Anomaly and the Wodzicki Residue. Commun. Math. Phys.194 (1998), 613–630.

    Article  MathSciNet  Google Scholar 

  11. D. Fermi and L. Pizzocchero. Local Zeta Regularization And The Scalar Casimir Effect. World Scientific Publishing (2017)

    Google Scholar 

  12. R. P. Feynman. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys.20 (1948), 367–387.

    Article  MathSciNet  Google Scholar 

  13. R. P. Feynman, A. R. Hibbs and D. F. Styer. Quantum Mechanics and Path Integrals. Dover Publications, Inc., Emended Edition, Mineola, NY, 2005.

    Google Scholar 

  14. T.-P. Hack and V. Moretti. On the stress-energy tensor of quantum fields in curved spacetimes-comparison of different regularization schemes and symmetry of the Hadamard/Seeley-DeWitt coefficients. J. Phys. A: Math. Theor.45 (2012), 374019.

    Article  MathSciNet  Google Scholar 

  15. T. Hartung. ζ-functions of Fourier Integral Operators. Ph.D. thesis, King’s College London, London, 2015.

    Google Scholar 

  16. T. Hartung. Regularizing Feynman Path Integrals using the generalized Kontsevich-Vishik trace. J. Math. Phys.58 (2017), 123505.

    Article  MathSciNet  Google Scholar 

  17. T. Hartung. Feynman path integral regularization using Fourier Integral Operator ζ-functions. In: A. Böttcher, D. Potts, P. Stollmann, D. Wenzel (eds) The Diversity and Beauty of Applied Operator Theory. Operator Theory: Advances and Applications, vol 268. Birkhäuser (2018), 261–289

    Google Scholar 

  18. T. Hartung and K. Jansen. Zeta-regularized vacuum expectation values. J. Math. Phys. 60 (2019), 093504.

    Article  MathSciNet  Google Scholar 

  19. T. Hartung and S. Scott. A generalized Kontsevich-Vishik trace for Fourier Integral Operators and the Laurent expansion of ζ-functions. (2015) arXiv:1510.07324.

    Google Scholar 

  20. S. W. Hawking. Zeta Function Regularization of Path Integrals in Curved Spacetime. Communications in Mathematical Physics55 (1977), 133–148.

    Article  MathSciNet  Google Scholar 

  21. S. Iso and H. Murayama. Hamiltonian Formulation of the Schwinger Model. Progr. Theor. Phys.84 (1990), 142–163.

    Article  Google Scholar 

  22. K. Jansen and T. Hartung. Zeta-regularized vacuum expectation values from quantum computing simulations (2019) arXiv:1912.01276.

    Google Scholar 

  23. M. Kontsevich and S. Vishik. Determinants of elliptic pseudo-differential operators. Max Planck Preprint, arXiv:hep-th/9404046 (1994).

    Google Scholar 

  24. M. Kontsevich and S. Vishik. Geometry of determinants of elliptic operators. Functional Analysis on the Eve of the XXI century, Vol. I, Progress in Mathematics131 (1994), 173–197.

    MathSciNet  MATH  Google Scholar 

  25. M. Marcolli and A. Connes. From physics to number theory via noncommutative geometry. Part II: Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory. In: P. E. Cartier, B. Julia, P. Moussa, P. Vanhove (eds) Frontiers in Number Theory, Physics, and Geometry: On Random Matrices, Zeta Functions, and Dynamical Systems, Springer (2006).

    Google Scholar 

  26. D. G. C. McKeon and T. N. Sherry. Operator regularization and one-loop Green’s functions. Phys. Rev. D35 (1987), 3854

    Article  MathSciNet  Google Scholar 

  27. V. Moretti. Direct ζ-function approach and renormalization of one-loop stress tensor in curved spacetimes. Phys. Rev. D56 (1997), 7797.

    Article  MathSciNet  Google Scholar 

  28. V. Moretti. One-loop stress-tensor renormalization in curved background: the relation between ζ-function and point-splitting approaches, and an improved point-splitting procedure. J. Math. Phys.40 (1999), 3843.

    Article  MathSciNet  Google Scholar 

  29. V. Moretti. A review on recent results of the ζ-function regularization procedure in curved spacetime. In: D. Fortunato, M. Francaviglia, A. Masiello (eds) Recent developments in General Relativity, Springer (2000)

    Google Scholar 

  30. V. Moretti. Local ζ-functions, stress-energy tensor, field fluctuations, and all that, in curved static spacetime. Springer Proc. Phys.137 (2011), 323–332

    Article  MathSciNet  Google Scholar 

  31. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer (1992).

    Google Scholar 

  32. M. J. Radzikowski. The Hadamard condition and Kay’s conjecture in (axiomatic) quantum field theory on curved space-time. Ph.D. thesis, Princeton University (1992).

    Google Scholar 

  33. M. J. Radzikowski. Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Communications in Mathematical Physics179 (1996), 529–553.

    Article  MathSciNet  Google Scholar 

  34. D. B. Ray. Reidemeister torsion and the Laplacian on lens spaces. Advances in Mathematics4 (1970), 109–126.

    Article  MathSciNet  Google Scholar 

  35. D. B. Ray and I. M. Singer. R-torsion and the Laplacian on Riemannian manifolds Advances in Mathematics7 (1971), 145–210.

    Google Scholar 

  36. N. M. Robles. Zeta Function Regularization. Ph.D. thesis, Imperial College London (2009).

    Google Scholar 

  37. A. Y. Shiekh. Zeta Function Regularization of Quantum Field Theory. Can. J. Phys.68 (1990), 620–629.

    Article  MathSciNet  Google Scholar 

  38. R. F. Streater and A. S. Wightman. PCT, Spin and Statistics and All That. Princeton University Press, (2000)

    Google Scholar 

  39. D. Tong. Quantum Field Theory. University of Cambridge Part III Mathematical Tripos, lecture notes, 2006, http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf.

  40. D. Tong. String Theory. University of Cambridge Part III Mathematical Tripos, lecture notes, 2009, http://www.damtp.cam.ac.uk/user/tong/string/string.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hartung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartung, T., Jansen, K. (2020). Integrating Gauge Fields in the ζ-Formulation of Feynman’s Path Integral. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_15

Download citation

Publish with us

Policies and ethics