Skip to main content

Long Time Decay Estimates in Real Hardy Spaces for the Double Dispersion Equation

  • Chapter
  • First Online:
  • 557 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We study the Cauchy problem for the linear generalized double dispersion equation and derive long time decay estimates for the solution in L p spaces and in real Hardy spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Chen, Y. Wang, S. Wang, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl. 299 (2004) 563–577.

    Article  MathSciNet  Google Scholar 

  2. M. D’Abbicco, A. De Luca, Long time decay estimates in real Hardy spaces for the double dispersion equation, J. Pseudo-Differ. Oper. Appl. (2019). https://doi.org/10.1007/s11868-019-00287-1.

  3. M. D’Abbicco, A benefit from theL smallness of initial data for the semilinear wave equation with structural damping, in Current Trends in Analysis and its Applications, 2015, 209–216. Proceedings of the 9th ISAAC Congress, Krakow. Eds V. Mityushev and M. Ruzhansky, http://www.springer.com/br/book/9783319125763.

  4. M. D’Abbicco, L 1 − L 1estimates for a doubly dissipative semilinear wave equation, Nonlinear Differential Equations and Applications NoDEA 24 (2017), 1–23, http://dx.doi.org/10.1007/s00030-016-0428-4

    Article  MathSciNet  Google Scholar 

  5. M. D’Abbicco, M.R. Ebert, Diffusion phenomena for the wave equation with structural damping in theL p − L qframework, J. Differential Equations, 256 (2014), 2307–2336, http://dx.doi.org/10.1016/j.jde.2014.01.002.

    Article  MathSciNet  Google Scholar 

  6. M. D’Abbicco, M.R. Ebert, An application ofL p − L qdecay estimates to the semilinear wave equation with parabolic-like structural damping, Nonlinear Analysis 99 (2014), 16–34, http://dx.doi.org/10.1016/j.na.2013.12.021.

    Article  MathSciNet  Google Scholar 

  7. M. D’Abbicco, M.R. Ebert, A classification of structural dissipations for evolution operators, Math. Meth. Appl. Sci. 39 (2016), 2558–2582, http://dx.doi.org/10.1002/mma.3713.

    Article  MathSciNet  Google Scholar 

  8. M. D’Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations. Nonlinear Analysis 149 (2017), 1–40.

    Article  MathSciNet  Google Scholar 

  9. M. D’Abbicco, M. R. Ebert, T. Picon, Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation, J. Pseudo-Differ. Oper. Appl. 7 (2016), 261–293.

    Article  MathSciNet  Google Scholar 

  10. M. D’Abbicco, M. Reissig, Semilinear structural damped waves, Math. Methods in Appl. Sc., 37 (2014), 1570–1592.

    Article  MathSciNet  Google Scholar 

  11. C. Fefferman and E. Stein, H pspaces of several variables, Acta Math. 129 (1972) 137–193.

    Article  MathSciNet  Google Scholar 

  12. G. A. Mangin, Physical and mathematical models of nonlinear waves in solids, A. Jeffrey, J. Engelbrecht (Eds.), NonlinearWaves in Solids, Elsevier, 1994.

    Google Scholar 

  13. A. Miyachi, On some Fourier multipliers forH p, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 157–179.

    MathSciNet  MATH  Google Scholar 

  14. A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 267–315.

    MathSciNet  MATH  Google Scholar 

  15. N. Polat, A. Ertas, Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl. 349 (2009) 10–20.

    Article  MathSciNet  Google Scholar 

  16. A. M. Samsonov, On existence of longitudinal strain solitons in a nonlinearly elastic rod, Sov. Phys.-Dokl. 4 (1988) 298–300.

    MATH  Google Scholar 

  17. A. M. Samsonov, On some exact travelling wave solutions for nonlinear hyperbolic equation, D. Fusco, A. Jeffrey (Eds.), Nonlinear waves and Dissipative Effects, Pitmann Research Notes in Mathematics Series, vol. 227, Longman Scientific & Technical; Longman, 1993, pp. 123–132.

    Google Scholar 

  18. A. M. Samsonov, E.V. Sokurinskaya, On the excitation of a longitudinal deformation soliton in a nonlinear elastic rod, Sov. Phys. Tech. Phys. 33 (1988) 989–991.

    Google Scholar 

  19. S. Wang, G. Chen, Cauchy problem of the generalized double dispersion equation, Nonlinear Anal. 64 (2006) 159–173.

    Article  MathSciNet  Google Scholar 

  20. R. Xu, Y. Liu, T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal. 71 (2009) 4977–4983.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The results for the linear problem in this contribution are a variant of the one contained in the master thesis of the second author, who has been a student at University of Bari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra De Luca .

Editor information

Editors and Affiliations

Appendix

Appendix

We recall how the Hardy spaces \(\mathcal {H}^p(\mathbb {R}^n)\) are presented by Fefferman and Stein [11]. We use the notation \(\mathcal {H}^p\) instead of the classical notation H p to avoid possible confusion with the Sobolev space W p, 2.

Fix, once for all, a radial nonnegative function \(\phi \in C^\infty _c(\mathbb {R}^n)\) supported in the unit ball with integral equal to 1. For \(u\in \mathcal {S}'(\mathbb {R}^n)\) we define the maximal functionM ϕu by

$$\displaystyle \begin{aligned} M_\phi u(x)=\sup_{0<t<\infty}|(u\ast\phi_t)(x)|, \end{aligned}$$

where ϕ t(x) = t nϕ(xt).

Definition 2

Let 0 < p < . A tempered distribution \(u\in \mathcal {S}'(\mathbb {R}^n)\) belongs to \(\mathcal {H}^p(\mathbb {R}^n)\) if and only if \(M_\phi u\in L^p(\mathbb {R}^n)\), i.e.,

$$\displaystyle \begin{aligned} \Vert u\Vert_{\mathcal{H}^p}=\Vert M_\phi u\Vert_{L^p}<\infty. \end{aligned}$$

For p = , we set \(\mathcal {H}^\infty (\mathbb {R}^n)=L^\infty (\mathbb {R}^n)\).

The spaces \(\mathcal {H}^p(\mathbb {R}^n)\) are independent of the choice of ϕ. For p = 1, \(\Vert u\Vert _{\mathcal {H}^1}\) is a norm and \(\mathcal {H}^1(\mathbb {R}^n)\) is a normed space densely contained in \(L^1(\mathbb {R}^n)\). For p > 1, \(\Vert u\Vert _{\mathcal {H}^p}\) is a norm equivalent to the usual L p norm and we denote \(\mathcal {H}^p(\mathbb {R}^n)=L^p(\mathbb {R}^n)\), by abusing notation. For 0 < p ≤ 1, the space \(\mathcal {H}^p(\mathbb {R}^n)\) is a complete metric space with the distance

$$\displaystyle \begin{aligned} d(u,v)=\Vert u-v\Vert_{\mathcal{H}^p}^p, \qquad u,v\in \mathcal{H}^p(\mathbb{R}^n). \end{aligned}$$

Although \(\mathcal {H}^p(\mathbb {R}^n)\) is not locally convex for 0 < p < 1 and \(\Vert u\Vert _{\mathcal {H}^p}\) is not truly a norm, we will still refer to \(\Vert u\Vert _{\mathcal {H}^p}\) as the “norm” of u, as it is customary.

The property \(f\in \mathcal {H}^p\) can be characterized by appropriate singular integrals in a way that has some analogy with the earlier maximal characterization [14, Theorem C]: a function f ∈ L 2 belongs to \(\mathcal {H}^p\) when p ∈ (0, 1], if and only if f ∈ L p and R αf ∈ L p, for |α|≤ k, where k = 1 + [(n − 1)(1∕p − 1)], and R αf denotes the Riesz transform of f, defined via the Fourier transform by

$$\displaystyle \begin{aligned} \widehat{R_\alpha f}(\xi)=(i\xi\lvert \xi \rvert^{-1})^\alpha\hat{f}(\xi). \end{aligned}$$

Moreover,

$$\displaystyle \begin{aligned} \|f\|{}_{\mathcal{H}^p} \approx \sum_{|\alpha|\leq k} \|R_\alpha f\|{}_{L^p}. \end{aligned}$$

Another number fixes the order of the moment conditions which the functions in Hardy spaces shall verify. Indeed,

$$\displaystyle \begin{aligned} \int_{\mathbb{R}^n} x^\alpha f(x)\,dx =0, \qquad \forall\,|\alpha|\leq [n(1/p-1)] \end{aligned}$$

for any function \(f\in \mathcal {H}^p\cap \mathcal C_c^\infty \).

In Theorem 2 we use a variant of the celebrated Mikhlin-Hörmander multiplier theorem for Hardy spaces (see [13]) to obtain the boundedness of operators acting on \(\mathcal {H}^p(\mathbb {R}^n)\).

Definition 3

Let m be a bounded function on \(\mathbb {R}^n\) and consider the operator T m defined by

$$\displaystyle \begin{aligned} T_m f= \mathscr{F}^{-1} \bigl(m(\xi)\hat{f}(\xi)\bigr). \end{aligned} $$
(19)

We say that m is a Fourier multiplier for \(\mathcal {H}^p\) if \(T_m f\in \mathcal {H}^p\) for all \(f\in \mathcal {H}^p\) and

$$\displaystyle \begin{aligned} \Vert T_m f\Vert _{\mathcal{H}^p} \leq C \Vert f\Vert _{\mathcal{H}^p}; \end{aligned} $$
(20)

in other words, if T m can be extended to a bounded operator from \(\mathcal {H}^p\) to \(\mathcal {H}^p\).

In this context, \(\mathcal {M}(\mathcal {H}^p)\) denotes the set of all the Fourier multipliers for \(\mathcal {H}^p\). The norm \(\Vert m\Vert _{\mathcal {M}(\mathcal {H}^p)}\) is defined to be the operator norm of T m in \(\mathcal {H}^p\), i.e.

$$\displaystyle \begin{aligned} \Vert m\Vert_{\mathcal{M}(\mathcal{H}^p)}=\sup_{f\in \mathcal{H}^p, f\neq 0}\frac{\Vert T_m f\Vert_{\mathcal{H}^p}}{\Vert f\Vert_{\mathcal{H}^p}}. \end{aligned} $$
(21)

Theorem 3

Let p ∈ (0, 2), and θ = θ(n, p) = n(1∕p − 1∕2). Assume that \(m \in C^k(\mathbb {R}^n)\), with m(ξ) = 0 in a neighborhood of the origin, and \(k=\max \lbrace [\theta ],[\frac {n}{2}]\rbrace +1\). If

$$\displaystyle \begin{aligned} |\partial_{\xi}^{\gamma} m(\xi)|\leq |\xi|{}^{-a\theta}(A|\xi|{}^{a-1})^{|\gamma|}, \ |\gamma|\leq k, \end{aligned}$$

for some constant a ≥ 0 and A ≥ 1, then \(m\in \mathcal {M}(\mathcal {H}^p(\mathbb {R}^n))\)and

$$\displaystyle \begin{aligned} \Vert m \Vert _{\mathcal{M}(\mathcal{H}^p(\mathbb{R}^n))}\leq CA^\theta, \end{aligned}$$

where C > 0 is a constant independent of A.

Theorem 4

Let p ∈ (0, 2), and θ = θ(n, p) = n(1∕p − 1∕2). Assume that \(m \in C^k(\mathbb {R}^n\setminus \{0\})\), with m(ξ) = 0 for \(\lvert \xi \rvert \geq 1\), and \(k=\max \lbrace [\theta ],[\frac {n}{2}]\rbrace +1\). If

$$\displaystyle \begin{aligned} |\partial_{\xi}^{\gamma} m(\xi)|\leq |\xi|{}^{a\theta}(A|\xi|{}^{-a-1})^{|\gamma|}, \ |\gamma|\leq k, \end{aligned}$$

for some constant a ≥ 0 and A ≥ 1, then \(m\in \mathcal {M}(\mathcal {H}^p(\mathbb {R}^n))\)and

$$\displaystyle \begin{aligned} \Vert m \Vert _{\mathcal{M}(\mathcal{H}^p(\mathbb{R}^n))}\leq CA^\theta, \end{aligned}$$

where C is a constant independent of A.

Let I r be the Riesz potential with order r > 0, defined by means of \(I_r f(\xi )=\mathscr {F}^{-1}(|\xi |{ }^{-r}\hat {f}(\xi ))\). If r ∈ (0, n), then there exists c n,r such that

$$\displaystyle \begin{aligned} I_r f(x)=c_{n,r}\int_{\mathbb{R}^n} \frac{f(y)}{|x-y|{}^{n-r}}\ dy \end{aligned}$$

and sufficiently smooth f. Real Hardy spaces have the property that the Hardy-Littlewood-Sobolev theorem for Riesz potential, valid in L p spaces, with p > 1, extends to \(\mathcal {H}^p\), with p ∈ (0, ), see [14, Theorem F].

Theorem 5

Consider r > 0 and 0 < p < nr. Then, there exists C = C(r, p) > 0 such that

$$\displaystyle \begin{aligned} \Vert I_r f\Vert_{\mathcal{H}^q(\mathbb{R}^n)}\leq C\Vert f\Vert_{\mathcal{H}^p(\mathbb{R}^n)}, \quad \frac{1}{q}=\frac{1}{p}-\frac{r}{n}. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Abbicco, M., De Luca, A. (2020). Long Time Decay Estimates in Real Hardy Spaces for the Double Dispersion Equation. In: Boggiatto, P., et al. Advances in Microlocal and Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36138-9_11

Download citation

Publish with us

Policies and ethics