Skip to main content

On the Poincaré Constant of Log-Concave Measures

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2256))

Abstract

The goal of this paper is to push forward the study of those properties of log-concave measures that help to estimate their Poincaré constant. First we revisit E. Milman’s result (Invent Math 177:1–43, 2009) on the link between weak (Poincaré or concentration) inequalities and Cheeger’s inequality in the log-concave cases, in particular extending localization ideas and a result of Latala, as well as providing a simpler proof of the nice Poincaré (dimensional) bound in the unconditional case. Then we prove alternative transference principle by concentration or using various distances (total variation, Wasserstein). A mollification procedure is also introduced enabling, in the log-concave case, to reduce to the case of the Poincaré inequality for the mollified measure. We finally complete the transference section by the comparison of various probability metrics (Fortet-Mourier, bounded-Lipschitz, …) under a log-concavity assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Alonso-Gutierrez, J. Bastero, Approaching the Kannan-Lovasz-Simonovits and variance conjectures, in LNM, vol 2131 (Springer, Berlin, 2015)

    MATH  Google Scholar 

  2. D. Bakry, F. Barthe, P. Cattiaux, A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures. Electron. Commun. Probab. 13, 60–66 (2008)

    Article  MathSciNet  Google Scholar 

  3. D. Bakry, P. Cattiaux, A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254, 727–759 (2008)

    Article  MathSciNet  Google Scholar 

  4. D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov diffusion operators, in Grundlehren der Mathematischen Wissenchaften, vol 348 (Springer, Berlin, 2014)

    Book  Google Scholar 

  5. K. Ball, F. Barthe, A. Naor, Entropy jumps in the presence of a spectral gap. Duke Math. J. 119, 41–63 (2003)

    Article  MathSciNet  Google Scholar 

  6. F. Barthe, D. Cordero-Erausquin, Invariances in variance estimates. Proc. Lond. Math. Soc. 106(1), 33–64 (2013)

    Article  MathSciNet  Google Scholar 

  7. F. Barthe, E. Milman, Transference principles for Log-Sobolev and Spectral-Gap with applications to conservative spin systems. Commun. Math. Phys. 323, 575–625 (2013)

    Article  MathSciNet  Google Scholar 

  8. F. Barthe, P. Cattiaux, C. Roberto, Concentration for independent random variables with heavy tails. AMRX 2005(2), 39–60 (2005)

    MathSciNet  MATH  Google Scholar 

  9. N. Berestycki, R. Nickl, Concentration of Measure (2009). http://www.statslab.cam.ac.uk/~beresty/teach/cm10.pdf

  10. S.G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)

    MathSciNet  MATH  Google Scholar 

  11. S.G. Bobkov, Spectral gap and concentration for some spherically symmetric probability measures, in Geometric Aspects of Functional Analysis, Israel Seminar 2000–2001. Lecture Notes in Mathematics, vol 1807, pp. 37–43 (Springer, Berlin, 2003)

    Google Scholar 

  12. S.G. Bobkov, Proximity of probability distributions in terms of Fourier-Stieltjes transforms. Russ. Math. Surv. 71(6), 1021–1079 (2016)

    Article  MathSciNet  Google Scholar 

  13. S.G. Bobkov, C. Houdré, Isoperimetric constants for product probability measures. Ann. Probab. 25(1), 184–205 (1997)

    Article  MathSciNet  Google Scholar 

  14. S.G. Bobkov, M. Ledoux, Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Relat. Fields 107(3), 383–400 (1997)

    Article  Google Scholar 

  15. H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22, 366–389 (1976)

    Article  Google Scholar 

  16. S. Brazitikos, A. Giannopoulos, P. Valettas, B.H. Vritsiou, Geometry of isotropic convex bodies, in Mathematics Surveys and Monographs, vol 196 (AMS, Providence, 2014)

    Google Scholar 

  17. P. Cattiaux, A. Guillin, Semi log-concave Markov diffusions, in Séminaire de Probabilités XLVI. Lecture Notes in Mathematics, vol 2014, pp. 231–292 (2015)

    Google Scholar 

  18. P. Cattiaux, A. Guillin, Hitting times, functional inequalities, Lyapunov conditions and uniform ergodicity. J. Funct. Anal. 272(6), 2361–2391 (2017)

    MATH  Google Scholar 

  19. P. Cattiaux, C. Léonard, Minimization of the Kullback information of diffusion processes Ann. Inst. Henri Poincaré. Prob. Stat. 30(1), 83–132 (1994). and correction in Ann. Inst. Henri Poincaré31, 705–707 (1995)

    Google Scholar 

  20. P. Cattiaux, N. Gozlan, A. Guillin, C. Roberto, Functional inequalities for heavy tails distributions and applications to isoperimetry. Electron. J. Probab. 15, 346–385 (2010)

    Article  MathSciNet  Google Scholar 

  21. P. Cattiaux, A. Guillin, C. Roberto, Poincaré inequality and the L p convergence of semi-groups. Electron. Commun. Probab. 15, 270–280 (2010)

    Article  MathSciNet  Google Scholar 

  22. P. Cattiaux, A. Guillin, P.A. Zitt, Poincaré inequalities and hitting times. Ann. Inst. Henri Poincaré. Prob. Stat. 49(1), 95–118 (2013)

    Article  Google Scholar 

  23. D. Cordero-Erausquin, N. Gozlan, Transport proofs of weighted Poincaré inequalities for log-concave distributions. Bernoulli 23(1), 134–158 (2017)

    Article  MathSciNet  Google Scholar 

  24. R.M. Dudley, Distances of probability measures and random variables. Ann. Math. Stat. 39, 1563–1572 (1968)

    Article  MathSciNet  Google Scholar 

  25. R.M. Dudley, Real Analysis and Probability (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  26. A. Eberle, Reflection coupling and Wasserstein contractivity without convexity. C. R. Acad. Sci. Paris Ser. I Math.349, 1101–1104 (2011)

    Article  MathSciNet  Google Scholar 

  27. A. Eberle, Reflection couplings and contraction rates for diffusions. Probab. Theory Relat. Fields 166(3), 851–886 (2016)

    Article  MathSciNet  Google Scholar 

  28. R. Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme. Geom. Funct. Anal. 23(2), 532–569 (2013)

    Article  MathSciNet  Google Scholar 

  29. M. Fradelizi, Concentration inequalities for s -concave measures of dilations of Borel sets and applications. Electron. J. Probab. 14(71), 2068–2090 (2009)

    Article  MathSciNet  Google Scholar 

  30. O. Guédon, Kahane-Khinchine type inequalities for negative exponent. Mathematika 46(1), 165–173 (1999)

    Article  MathSciNet  Google Scholar 

  31. O. Guédon, E. Milman, Interpolating thin shell and sharp large deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21, 1043–1068 (2011)

    Article  MathSciNet  Google Scholar 

  32. N. Huet, Isoperimetry for spherically symmetric log-concave probability measures. Rev. Mat. Iberoamericana 27(1), 93–122 (2011)

    Article  MathSciNet  Google Scholar 

  33. R. Kannan, L. Lovasz, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma. Discret. Comput. Geom. 13(3-4), 541–559 (1995)

    Article  MathSciNet  Google Scholar 

  34. B. Klartag, A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Relat. Fields 145(1-2), 1–33 (2009)

    Article  MathSciNet  Google Scholar 

  35. B. Klartag, Poincaré inequalities and moment maps. Ann. Fac. Sci. Toulouse Math. 22(1), 1–41 (2013)

    Article  MathSciNet  Google Scholar 

  36. B. Klartag, Concentration of measures supported on the cube. Isr. J. Math. 203(1), 59–80 (2014)

    Article  MathSciNet  Google Scholar 

  37. A.V. Kolesnikov, On diffusion semigroups preserving the log-concavity. J. Funct. Anal. 186(1), 196–205 (2001)

    Article  MathSciNet  Google Scholar 

  38. R. Latala, Order statistics and concentration of L r norms for log-concave vectors. J. Funct. Anal. 261, 681–696 (2011)

    Article  MathSciNet  Google Scholar 

  39. M. Ledoux, A simple analytic proof of an inequality by P. Buser. Proc. Am. Math. Soc. 121, 951–959 (1994)

    Article  MathSciNet  Google Scholar 

  40. M. Ledoux, Spectral gap, logarithmic Sobolev constant, and geometric bounds, in Surveys in Differential Geometry, vol IX, pp. 219–240 (International Press, Somerville, 2004)

    Google Scholar 

  41. M. Ledoux, From concentration to isoperimetry: semigroup proofs, in Concentration, Functional Inequality and Isoperimetry. Contemporary Mathematics, vol 545, pp. 155–166 (American Mathematical Society, New York, 2011)

    Google Scholar 

  42. Y.T. Lee, S.S. Vempala, Stochastic localization + Stieltjes barrier = tight bound for Log-Sobolev (2017). Available on Math. ArXiv. 1712.01791 [math.PR]

    Google Scholar 

  43. E. Meckes, M.W. Meckes, On the equivalence of modes of convergence for log-concave measures, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116, pp. 385–394 (Springer, New York, 2014)

    Google Scholar 

  44. E. Milman, On the role of convexity in isoperimetry, spectral-gap and concentration. Invent. Math. 177, 1–43 (2009)

    Article  MathSciNet  Google Scholar 

  45. E. Milman, Isoperimetric bounds on convex manifolds, in Concentration, Functional Inequality and Isoperimetry. Contemporary Mathematics, vol 545, pp. 195–208 (American Mathematical Society, New York, 2011)

    Google Scholar 

  46. E. Milman, Properties of isoperimetric, functional and transport-entropy inequalities via concentration. Probab. Theory Relat. Fields 152(3-4), 475–507 (2012)

    Article  MathSciNet  Google Scholar 

  47. S.T. Rachev, L.B. Klebanov, S.V. Stoyanov, F.J. Fabozzi, The Methods of Distances in the Theory of Probability and Statistics (Springer, New York, 2013)

    Book  Google Scholar 

  48. M. Röckner, F.Y. Wang, Weak Poincaré inequalities and L 2-convergence rates of Markov semigroups. J. Funct. Anal. 185(2), 564–603 (2001)

    Article  MathSciNet  Google Scholar 

  49. A. Saumard, J.A. Wellner, Log-concavity and strong log-concavity: a review. Stat. Surv. 8, 45–114 (2014)

    Article  MathSciNet  Google Scholar 

  50. M. Troyanov, Concentration et inégalité de Poincaré (2001). https://infoscience.epfl.ch/record/118471/files/concentration2001.pdf

  51. D. Zimmermann, Logarithmic Sobolev inequalities for mollified compactly supported measures. J. Funct. Anal. 265, 1064–1083 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Cattiaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cattiaux, P., Guillin, A. (2020). On the Poincaré Constant of Log-Concave Measures. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2256. Springer, Cham. https://doi.org/10.1007/978-3-030-36020-7_9

Download citation

Publish with us

Policies and ethics