Skip to main content

Bobkov’s Inequality via Optimal Control Theory

  • Chapter
  • First Online:
  • 960 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2256))

Abstract

We give a Bellman proof of Bobkov’s inequality using arguments of dynamic programming. As a byproduct of the method we obtain a characterization of smooth optimizers.

This paper is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while two of the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester. P.I. is partially supported by NSF DMS-1856486 and CAREER DMS-1945102.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here B appears as an infimum instead of supremum, but then − B is a supremum and the above reasoning applies in the same way, except that all inequalities will be reversed and \(\sup \) in (3.2.6) will be replaced by \(\inf \).

  2. 2.

    Notice that \(\varphi ^{2}(t)-B_{x}^{2} \neq 0\) follows from the second equation in (3.3.9)

References

  1. R.A. Adams, F.H. Clarke, Gross’s Logarithmic Sobolev inequality: a simple proof. Am. J. Math. 101(6), 1265–1269 (1979)

    Article  MathSciNet  Google Scholar 

  2. D. Bakry, M. Ledoux, Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math. 123, 259–281 (1996)

    MathSciNet  MATH  Google Scholar 

  3. F. Barthe, B. Maurey, Some remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincaré Probab. Statist. 36(4), 419–434 (2000)

    Article  MathSciNet  Google Scholar 

  4. S.G. Bobkov, An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25(1), 206–214 (1997)

    Article  MathSciNet  Google Scholar 

  5. C. Borell, The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30, 207–216 (1975)

    Article  MathSciNet  Google Scholar 

  6. D.L. Burkholder, Boundary value problems and sharp inequalities in for martingale transforms. Ann. Prob. 12(3), 647–702 (1984)

    Article  Google Scholar 

  7. E.A. Carlen, C. Kerce, On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. Calc. Var. Partial Differ. Equ. 13(1), 1–18 (2001)

    Article  MathSciNet  Google Scholar 

  8. A. Ehrhard, Symétrisation dans l’espace de Gauss. Math. Scand. 53, 281–301 (1983)

    Article  MathSciNet  Google Scholar 

  9. A. Ehrhard, Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. École Norm. Sup. (4) 17(2), 317–332 (1984)

    Google Scholar 

  10. M. Ledoux, A Short Proof of the Gaussian Isoperimetric Inequality. High Dimensional Probability. High Dimensional Probability (Oberwolfach, 1996). Progress in Probability, vol. 43 (Birkhäuser, Basel, 1998), pp. 229–232

    Google Scholar 

  11. F. Nazarov, S. Treil, Hunting the Bellman function: application to estimates of singular integrals and other classical problems of harmonic analysis. Algebra i Analiz 8(5), 32–162 (1996) (in Russian); translated in St.-Petersburg Math. J. 8(5), 721–824 (1997)

    Google Scholar 

  12. F. Nazarov, S. Treil, A. Volberg, Bellman function in stochastic optimal control and harmonic analysis (how our Bellman function got its name). Oper. Th.: Adv. Appl. 129, 393–424 (2001)

    Google Scholar 

  13. A. Osekowski, A new approach to Hardy-type inequalities. Arch. Math. 104(2), 165–176 (2015)

    Article  MathSciNet  Google Scholar 

  14. V.N. Sudakov, B.S. Tsirel’son, Extremal properties of half-spaces for spherically invariant measures. J. Soviet Math. 9, 9–18 (1978)

    Article  Google Scholar 

  15. L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory (Saunders, Philadelphia, 1969)

    MATH  Google Scholar 

  16. B. Zegarlinski, Isoperimetry for Gibbs measures. Ann. Probab. 29(2), 802–819 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We would like to thank the anonymous referee for his/her helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Barthe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barthe, F., Ivanisvili, P. (2020). Bobkov’s Inequality via Optimal Control Theory. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2256. Springer, Cham. https://doi.org/10.1007/978-3-030-36020-7_3

Download citation

Publish with us

Policies and ethics