Skip to main content

Several Results Regarding the (B)-Conjecture

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2256))

Abstract

In the first half of this note we construct Gaussian measures on \(\mathbb {R}^n\) which do not satisfy a strong version of the (B)-property. In the second half we discuss equivalent functional formulations of the (B)-conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Artstein-Avidan, B. Klartag, V. Milman, The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51(1–2), 33–48 (2010)

    MATH  Google Scholar 

  2. A.L. Bar-on, The (B) conjecture for uniform measures in the plane, in Bo’az Klartag and Emanuel Milman (eds.) Geometric Aspects of Functional Analysis, Israel Seminar 2011–2013. Lecture Notes in Mathematics, vol 2116, pp. 341–353 (Springer, Cham, 2014)

    Google Scholar 

  3. C. Borell, Convex measures on locally convex spaces. Arkiv för matematik 12(1-2), 239–252 (1974)

    Article  MathSciNet  Google Scholar 

  4. C. Borell, Convex set functions in d-space. Period. Math. Hung. 6(2), 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  5. K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality. Adv. Math. 231(3–4), 1974–1997 (2012)

    Article  MathSciNet  Google Scholar 

  6. S. Chen, Y. Huang, Q.-R. Li, J. Liu, L p-Brunn-Minkowski inequality for \(p\in (1-\frac {c}{n^{\frac {3}{2}}}, 1)\) (2018). arxiv:1811.10181

    Google Scholar 

  7. A. Colesanti, G. Livshyts, A. Marsiglietti, On the stability of Brunn-Minkowski type inequalities. J. Funct. Anal. 273(3), 1120–1139 (2017)

    Article  MathSciNet  Google Scholar 

  8. D. Cordero-Erausquin, Santaló’s inequality on \(\mathbb {C}^n\) by complex interpolation. C.R. Math. 334(9), 767–772 (2002)

    Google Scholar 

  9. D. Cordero-Erausquin, M. Fradelizi, B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214(2), 410–427 (2004)

    Article  MathSciNet  Google Scholar 

  10. A. Eskenazis, P. Nayar, T. Tkocz, Gaussian mixtures: Entropy and geometric inequalities. Ann. Probab. 46(5), 2908–2945 (2018)

    Article  MathSciNet  Google Scholar 

  11. F. Franklin, Proof of a theorem of Tchebycheff’s on definite integrals. Am. J. Math. 7(4), 377 (1885)

    Google Scholar 

  12. A. Kolesnikov, E. Milman, LocalL p-Brunn-Minkowski Inequalities forp < 1 (2017). arxiv:1711.01089

    Google Scholar 

  13. R. Latała, On some inequalities for Gaussian measures, in Proceedings of the International Congress of Mathematicians, Beijing, vol II, pp. 813–822 (Higher Ed. Press, Beijing, 2002)

    Google Scholar 

  14. P. Nayar, T. Tkocz, A note on a Brunn-Minkowski inequality for the Gaussian measure. Proc. Am. Math. Soc. 141(11), 4027–4030 (2013)

    Article  MathSciNet  Google Scholar 

  15. P. Nayar, T. Tkocz, On a Convexity Property of Sections of the Cross-Polytope (2018). arxiv:1810.02038

    Google Scholar 

  16. L. Rotem, A Letter: The Log-Brunn-Minkowski Inequality for Complex Bodies (2014). arXiv:1412.5321

    Google Scholar 

  17. C. Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality. Geom. Dedicata. 177(1), 353–365 (2014)

    Article  MathSciNet  Google Scholar 

  18. C. Saroglou, More on logarithmic sums of convex bodies. Mathematika, 62(03), 818–841 (2016)

    Article  MathSciNet  Google Scholar 

  19. R. Schneider, in Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, 2nd edition (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liran Rotem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cordero-Erausquin, D., Rotem, L. (2020). Several Results Regarding the (B)-Conjecture. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2256. Springer, Cham. https://doi.org/10.1007/978-3-030-36020-7_11

Download citation

Publish with us

Policies and ethics