Skip to main content

Numerical Method and Simulations

  • Chapter
  • First Online:
Charge Transport in Low Dimensional Semiconductor Structures

Part of the book series: Mathematics in Industry ((TECMI,volume 31))

  • 427 Accesses

Abstract

The aim is to simulate the DG-MOSFET of first figure in this chapter with the model presented in Chap. 7 consisting of the Schrödinger–Poisson block (1.25), (1.27) coupled to the energy-transport equations (7.30), (7.31).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben Abdallah, N., Caceres, M.J., Carrillo, J.A., Vecil, F.: A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs. J. Comput. Phys. 228(17), 6553–6571 (2009) Blokhin, A.M., Birkin, A.D.: Stability analysis of supersonic regime past infinite wedge. J. Appl. Mech. Tech. Phys. 36(4), 496–512 (1996)

    Article  MathSciNet  Google Scholar 

  2. Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24, 417–436 (2012)

    Article  MathSciNet  Google Scholar 

  3. Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET by a non-parabolic energy-transport model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 58, 321–343 (2012)

    Article  MathSciNet  Google Scholar 

  4. Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22, 986–1007 (2000)

    Article  MathSciNet  Google Scholar 

  5. Galler, M., Schürrer, F.: A deterministic Solver to the Boltzmann-Poisson system including quantization effects for silicon-MOSFETs. In: Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 531–536. Springer, Berlin (2008)

    Chapter  Google Scholar 

  6. Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Mod. 55, 1003–1020 (2012)

    Article  MathSciNet  Google Scholar 

  7. Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite difference scheme. J. Comput. Phys. 221, 439–468 (2007)

    Article  MathSciNet  Google Scholar 

  8. Vecil, F., Mantas, J.M., Caceres, M.J., Sampedro, C., Godoy, A., Gamiz, F.: A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: comparison with Monte-Carlo. Comput. Math. Appl. 67(9), 1703–1721 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camiola, V.D., Mascali, G., Romano, V. (2020). Numerical Method and Simulations. In: Charge Transport in Low Dimensional Semiconductor Structures. Mathematics in Industry(), vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-35993-5_8

Download citation

Publish with us

Policies and ethics