Skip to main content

Part of the book series: Mathematics in Industry ((TECMI,volume 31))

  • 420 Accesses

Abstract

In this chapter MEP is applied to close the moment equations for electrons in silicon semiconductors. In our model we consider the electrons distributed in the six X-valleys assumed as equivalent. The approximation given by Kane will be used as dispersion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, we have written \(\boldsymbol {\lambda } = \delta \overline {\boldsymbol {\lambda }}\) and \( \boldsymbol {\lambda }^{W} = \delta \overline {\boldsymbol {\lambda }}^{W} \) and expanded around δ = 0. Once the expansion has been obtained, we the original variables have been restored.

  2. 2.

    Round brackets mean symmetrization, e.g. A (ij) = 1∕2(A ij + A ji).

  3. 3.

    The electron Fermi quasi-level is defined up to an additive constant. We assume that \(N_C \exp \big ( q \frac {V + \varphi _n}{K_B T_n} \big ) \) is equal to the intrinsic concentration n i.

  4. 4.

    In the parabolic approximation \(\frac {3}{2 \lambda ^W} = W\). In the case of the Kane dispersion relation it can be used as a reasonable approximation.

  5. 5.

    We recall that a summation must be intended with respect to repeated dummy indices.

References

  1. Alí, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamic model for covalent semiconductors with applications to GaN and SiC. Acta Appl. Math. 122, 335–348 (2012)

    MATH  Google Scholar 

  2. Anile, A.M., Romano, V.: Non parabolic band transport in semiconductors: closure of the moment equations. Contin. Mech. Thermodyn. 11, 307–325 (1999)

    Article  MathSciNet  Google Scholar 

  3. Anile, A.M., Romano, V.: Hydrodynamical modeling of charge carrier transport in semiconductors. Meccanica 35, 249–296 (2000)

    Article  Google Scholar 

  4. Anile, A.M., Junk, M., Romano, V., Russo, G.: Cross-validation of numerical schemes for extended hydrodynamical models of semiconductors. Math. Models Methods Appl. Sci. 10, 833–861 (2000)

    Article  MathSciNet  Google Scholar 

  5. Anile, A.M., Muscato, O., Romano, V.: Moment equations with maximum entropy closure for carrier transport in semiconductor devices: validation in bulk silicon. VLSI Des. 10, 335–354 (2000)

    Article  Google Scholar 

  6. Anile, A.M., Romano, V., Russo, G.: Hyperbolic hydrodynamical model of carrier transport in semiconductors. VLSI Des. 8, 521–525 (1998)

    Article  Google Scholar 

  7. Anile, A.M., Mascali, G., Romano, V.: Recent developments in hydrodynamical modeling of semiconductors. In: Mathematical Problems in Semiconductor Physics. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 15-22, 1998, Lecture Notes in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  8. Anile, A.M., Marrocco, A., Romano, V., Sellier, J.M.: 2D numerical simulation of the MEP energy-transport model with a mixed finite elements scheme. J. Comput. Electron. 4, 231–259 (2005)

    Article  Google Scholar 

  9. Baccarani, G., Wordeman, M.R.: An investigation of steady-state velocity overshoot in silicon. Solid-State Electron. 28, 407–416 (1985)

    Article  Google Scholar 

  10. Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37, 3306–3333 (1996)

    Article  MathSciNet  Google Scholar 

  11. Ben Abdallah, N., Degond, P., Genieys, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84, 205–231 (1996)

    Article  MathSciNet  Google Scholar 

  12. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  13. Chen, D., Kan, E.C., Ravaioli, U., Shu, C.-W., Dutton, R.: An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electron Device Lett. 13, 26–28 (1992)

    Article  Google Scholar 

  14. de Groot, S.R., Mazur, P.: Non Equilibrium Thermodynamics. Dover Publications, New York (1985)

    MATH  Google Scholar 

  15. Drago, C.R., Romano, V.: Optimal control for semiconductor diode design based on the MEP energy-transport model. J. Comput. Theor. Transp. 46(6–7), 459–479 (2017)

    Article  MathSciNet  Google Scholar 

  16. Faure, C., Papegay, Y.: Odyssée user’s guide version 1.7. Technical Report RT-0224 (1998), 81

    Google Scholar 

  17. Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48, 2244–2274 (1993)

    Article  Google Scholar 

  18. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Google Scholar 

  19. GNU/Archimedes-website. http://www.gnu.org/software/archimedes/

  20. Grinber, A.A., Lury, S.: Diffusion in a short base. Solid State Electron. 35(9), 1299–1309 (1992)

    Article  Google Scholar 

  21. Hänsch, W.: The Drift Diffusion Equation and Its Applications in MOSFET Modeling. Springer, Wien (1991)

    Book  Google Scholar 

  22. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Wien (1989)

    Book  Google Scholar 

  23. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)

    Book  Google Scholar 

  24. Lyumkis, E., Polsky, B., Shir, A., Visocky, P.: Transient semiconductor device simulation including energy balance equation. COMPEL Int. J. Comput. Math. Electr. 11, 311–325 (1992)

    Article  Google Scholar 

  25. Majorana, A., Romano, V.: Comparing kinetic and MEP model of charge transport in semiconductors. In: Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 525–530. Springer, Berlin (2008)

    Chapter  Google Scholar 

  26. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    Book  Google Scholar 

  27. Marrocco, A., Montarnal, P.: Simulation de modéles “energy transport” á áide des éléments finis mixtes. C. R. Acad. Sci. Paris 232, ser. I, 535 (1996)

    Google Scholar 

  28. Mascali, G., Romano, V.: Simulation of Gunn oscillations with a non parabolic hydrodynamical model based on the maximum entropy principle. COMPEL Int. J. Comput. Math. Electr. 24, 35–54 (2005)

    Article  Google Scholar 

  29. Mascali, G., Romano, V., Sellier, J.M.: MEP parabolic hydrodynamical model for holes in silicon semiconductors. Nuovo Cimento B 120, 197–215 (2005)

    Google Scholar 

  30. Montarnal, P.: Modèles de transport d’énergie des semi-conducteurs: études asymptotiques et résolution par des éléments finis mixtes. Ph.D. Thesis. Université Paris VI (1997)

    Google Scholar 

  31. Morandi, O.: Multiband Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys. Rev. B 80, 024301 (2009)

    Article  Google Scholar 

  32. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  Google Scholar 

  33. Muscato, O.: Validation of an extended hydrodynamic model for a submicron npn bipolar junction transistor. Phys. A 365, 409–428 (2006)

    Article  Google Scholar 

  34. Romano, V.: Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Contin. Mech. Thermodyn. 12, 31–51 (2000)

    Article  MathSciNet  Google Scholar 

  35. Romano, V.: Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices. Math. Methods Appl. Sci. 24, 439–471 (2001)

    Article  MathSciNet  Google Scholar 

  36. Schenk, A.: Advanced Physical Models for Silicon Device Simulations. Springer, Wien (1998)

    Book  Google Scholar 

  37. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)

    Book  Google Scholar 

  38. Stracquadanio, G., Romano, V., Nicosia, G.: Semiconductor device design using the BiMADS algorithm. J. Comput. Phys. 242, 304–320 (2013)

    Article  MathSciNet  Google Scholar 

  39. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002–2014 (1962)

    Article  Google Scholar 

  40. Tomizawa, K.: Numerical Simulation of Submicron Semiconductor Devices. Artech House Publishers, Boston (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camiola, V.D., Mascali, G., Romano, V. (2020). Application of MEP to Silicon. In: Charge Transport in Low Dimensional Semiconductor Structures. Mathematics in Industry(), vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-35993-5_4

Download citation

Publish with us

Policies and ethics