Skip to main content

Part of the book series: Mathematics in Industry ((TECMI,volume 31))

  • 432 Accesses

Abstract

In this chapter a short overview will be given regarding the physics of semiconductors and some properties of the Boltzmann equation that is the starting point for describing the semiclassical transport of charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol “∧” denotes the vector product.

  2. 2.

    For any function g(x) belonging to the space \(L^1 (\mathbb {R}^d)\) of the summable functions defined over \(\mathbb {R}^d\), with d integer, we define the Fourier transform as

    $$\displaystyle \begin{aligned} \mathscr{F} g (\mathbf{p}) = \int_{\mathbb{R}^d} g(\mathbf{x}) e^{- \frac{i}{\hbar}\mathbf{p} \cdot \mathbf{x}} \, d \mathbf{x} \quad \forall \mathbf{p} \in R^d. \end{aligned}$$

    Note that p has the dimension of a momentum if x has the dimension of a length.

    For any function \(h (\mathbf {p}) \in L^1 (\mathbb {R}^d)\), the inverse Fourier transform is given by

    $$\displaystyle \begin{aligned} \mathscr{F}^{-1} h (\mathbf{x}) = \frac{1}{(2 \pi \, \hbar)^d} \int_{\mathbb{R}^d} h (\mathbf{p}) e^{\frac{i}{\hbar}\mathbf{p} \cdot \mathbf{x}} \, d \mathbf{p} \quad \forall \mathbf{x} \in R^d. \end{aligned}$$

References

  1. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Publishing, Philadelphia (1976)

    MATH  Google Scholar 

  2. Ben Abdallah, N., Méhats, F.: Semiclassical analysis of the Schrödinger equation with a partially confining potential. J. Math. Pures Appl. 84, 580–614 (2005)

    Article  MathSciNet  Google Scholar 

  3. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  Google Scholar 

  4. Chen, D., Wei, G.-W.: Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices. J. Comput. Phys. 229, 4431–4460 (2010)

    Article  Google Scholar 

  5. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A discontinuous Galerkin solver for Boltzmann Poisson systems in nano devices. Comput. Methods Appl. Mech. Eng. 198, 3130–3150 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations. Boletin de la Sociedad Espanola de Matematica Aplicada 54, 47–64 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Coco, M., Mascali, G., Romano, V.: Monte Carlo analysis of thermal effects in monolayer graphene. J. Comput. Theor. Transp. 45, 540–553 (2016)

    Article  MathSciNet  Google Scholar 

  8. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  9. Datta, S.: Quantum Phenomena. Modular Series on Solid State Devices, vol. 8. Addison-Wesley, Boston (1989)

    Google Scholar 

  10. Fischetti, M.V.: Master-equation approach to the study of electronic transport in small semiconductor devices. Phys. Rev. B 59, 4901–4917 (1999)

    Article  Google Scholar 

  11. Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2008)

    Google Scholar 

  12. Jacoboni, C.: Theory of Electron Transport in Semiconductors. Springer, Berlin (2010)

    Book  Google Scholar 

  13. Jüngel, A.: Transport Equations for Semiconductors. Springer, Berlin (2009)

    Book  Google Scholar 

  14. Kittel, C.: Introduction to Solid State Physics, 8th ed. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  15. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)

    Article  MathSciNet  Google Scholar 

  16. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  17. Mahan, G.D.: Many-Particle Physics. Springer, Berlin (2000)

    Book  Google Scholar 

  18. Majorana, A.: Conservation laws from the Boltzmann equation describing electron-phonon interactions in semiconductors. Transp. Theory Stat. Phys. 22, 849–859 (1993)

    Article  MathSciNet  Google Scholar 

  19. Majorana, A.: Equilibrium solutions of the non-linear Boltzmann equation for an electron gas in a semiconductor. Nuovo Cimento B 108, 871–877 (1993)

    Article  Google Scholar 

  20. Majorana, A.: Space homogeneous solutions of the Boltzmann equation describing electron-phonon interactions in semiconductors. Transp. Theory Stat. Phys. 20, 261–279 (1991)

    Article  MathSciNet  Google Scholar 

  21. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    Book  Google Scholar 

  22. Mascali, G., Romano, V.: Hydrodynamic subband model for semiconductors based on the maximum entropy principle. Nuovo Cimento C 33, 155–163 (2010)

    MATH  Google Scholar 

  23. Poupaud, F.: On a system of nonlinear boltzmann equations of semiconductor physics. SIAM J. Appl. Math. 50, 1593–1606 (1990)

    Article  MathSciNet  Google Scholar 

  24. Poupaud, F.: Runaway phenomena and fluid approximation under high fields in semiconductor kinetic theory. Z. Angew. Math. Mech. 72, 359–372 (1992)

    Article  MathSciNet  Google Scholar 

  25. Romano, V.: Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle. J. Math. Phys. 48, 123504-1–123504-24 (2007)

    Article  MathSciNet  Google Scholar 

  26. Romano, V., Majorana, A., Coco, M.: DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene. J. Comput. Phys. 302, 267–284 (2015)

    Article  MathSciNet  Google Scholar 

  27. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)

    Book  Google Scholar 

  28. Van Roosbroek, W.: Theory of flow of electrons and holes in germanoum and other semiconductors. Bell Syst. Tech. J. 29(4), 560–607 (1950)

    Article  Google Scholar 

  29. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96, 2192–2203 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camiola, V.D., Mascali, G., Romano, V. (2020). Band Structure and Boltzmann Equation. In: Charge Transport in Low Dimensional Semiconductor Structures. Mathematics in Industry(), vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-35993-5_1

Download citation

Publish with us

Policies and ethics