Skip to main content

Mathematics for a Nonsmooth World

  • Chapter
  • First Online:
  • 623 Accesses

Part of the book series: Frontiers in Applied Dynamical Systems: Reviews and Tutorials ((FIADS,volume 7))

Abstract

A system may be said to exhibit nonsmooth dynamics if the laws that govern its behaviour change markedly at certain thresholds. Those changes might represent decisions, physical switches, boundaries of solid objects, or changes in modes of contact. Here we look at the current understanding of nonsmooth dynamics as a means of approximation, and how it allows us to model novel phenomena beyond the scope of smooth dynamical systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964)

    MATH  Google Scholar 

  2. M.A. Aizerman, F.R. Gantmakher, On the stability of equilibrium positions in discontinuous systems. Prikl. Mat. i Mekh. 24, 283–293 (1960)

    MATH  Google Scholar 

  3. M.A. Aizerman, E.S. Pyatnitskii, Fundamentals of the theory of discontinuous systems I, II. Autom. Remote Control 35, 1066–1079, 1242–1292 (1974)

    MATH  Google Scholar 

  4. A.A. Andronov, A.A. Vitt, S.E. Khaikin, Theory of Oscillations (Fizmatgiz, Moscow, 1959, in Russian)

    Google Scholar 

  5. J. Awrejcewicz, D. Sendkowski, Stick-slip chaos detection in coupled oscillators with friction. Int. J. Solids Struct. 42, 5669–5682 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Awrejcewicz, L. Dzyubak, C. Grebogi, Estimation of chaotic and regular (stick-slip and slip-slip) oscillations exhibited by coupled oscillators with dry friction. Nonlinear Dyn. 42, 383–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Baule, E.G.D. Cohen, H. Touchette, A path integral approach to random motion with nonlinear friction. J. Phys. A 43(2), 025003 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.T. Bengisu, A. Akay, Stick–slip oscillations: dynamics of friction and surface roughness. J. Acoust. Soc. Am. 105(1), 194–205 (1999)

    Article  Google Scholar 

  9. M.V. Berry, Stokes’ phenomenon; smoothing a Victorian discontinuity. Publ. Math. Inst. Hautes Études Sci. 68, 211–221 (1989)

    Article  MATH  Google Scholar 

  10. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Oxford University Press, Oxford, 1950)

    MATH  Google Scholar 

  11. Y. Braiman, F. Family, H.G.E. Hentschel, Nonlinear friction in the periodic stick-slip motion of coupled oscillators. Phys. Rev. B 55(8), 5491 (1997)

    Article  Google Scholar 

  12. R. Burridge, L. Knopoff, Model and theoretical seismicity. Bull. Seism. Soc. Am. 57, 341–371 (1967)

    Google Scholar 

  13. R. Casey, H. de Jong, J.L. Gouze, Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol. 52, 27–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. C.V. Chianca, J.S. Sá Martins, P.M.C. de Oliveira, Mapping the train model for earthquakes onto the stochastic sandpile model. Eur. Phys. J. B 68, 549–555 (2009)

    Article  MATH  Google Scholar 

  15. M. Cieplak, E.D. Smith, M.O. Robbins, Molecular origins of friction: the force on adsorbed layers. Science 265(5176), 1209– 1212 (1994)

    Article  Google Scholar 

  16. I. Clancy, D. Corcoran, State-variable friction for the Burridge-Knopoff model. Phys. Rev. E 80, 016113 (2009)

    Article  Google Scholar 

  17. A.R. Crowther, R. Singh, Identification and quantification of stick-slip induced brake groan events using experimental and analytical investigations. Noise Control Eng. J. 56(4), 235–255 (2008)

    Article  Google Scholar 

  18. P.R. Dahl, A solid friction model, in TOR-158(3107-18) (The Aerospace Corporation, El Segundo, 1968)

    Book  Google Scholar 

  19. E. Davidson, M. Levin, Gene regulatory networks (special feature). PNAS 102(14), 4925 (2005)

    Article  Google Scholar 

  20. M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications (Springer, Berlin, 2008)

    MATH  Google Scholar 

  21. R. Edwards, A. Machina, G. McGregor, P. van den Driessche, A modelling framework for gene regulatory networks including transcription and translation. Bull. Math. Biol. 77, 953–983 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Eisenman, Factors controlling the bifurcation structure of sea ice retreat. J. Geophys. Res. 117, D01111 (2012)

    Article  Google Scholar 

  23. M.I. Feigin, Doubling of the oscillation period with C-bifurcations in piecewise continuous systems. J. Appl. Math. Mech. 34, 861–869 (1970)

    Article  MathSciNet  Google Scholar 

  24. M.I. Feigin, The increasingly complex structure of the bifurcation tree of a piecewise-smooth system. J. Appl. Math. Mech 59, 853–863 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.F. Filippov, Differential Equations with Discontinuous Right-Hand Side, vol. 2 (American Mathematical Society Translations, 1964), pp. 199–231

    Google Scholar 

  26. A.F. Filippov, Differential Equations with Discontinuous Righthand Sides (Kluwer, Dordrecht, 1988) (original in Russian 1985)

    Book  Google Scholar 

  27. I. Flügge-Lotz, Discontinuous Automatic Control (Princeton University Press, Princeton, 1953)

    Book  MATH  Google Scholar 

  28. P. Glendinning, M.R. Jeffrey, S. Webber, Pausing in piecewise-smooth dynamic systems. Proc. R. Soc. A 475, 20180574 (2019)

    Article  MATH  Google Scholar 

  29. J. Guckenheimer, Review of [35] by M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk. SIAM Rev. 50(3), 606–609 (2008)

    Google Scholar 

  30. A.V. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Proc. Physiol. Soc. 40, iv–vii (1910)

    Google Scholar 

  31. N. Hinrichs, M. Oestreich, K. Popp, On the modelling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998)

    Article  Google Scholar 

  32. J. Ing, E. Pavlovskaia, M. Wiercigroch, S. Banerjee, Bifurcation analysis of an impact oscillator with a one-sided elastic constraints near grazing. Physica D 239, 312–321 (2010)

    Article  MATH  Google Scholar 

  33. M.R. Jeffrey, Hidden dynamics in models of discontinuity and switching. Physica D 273–274, 34–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. M.R. Jeffrey, The ghosts of departed quantities in switches and transitions. SIAM Rev. 60(1), 116–136 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. M.R. Jeffrey, Hidden Dynamics: The Mathematics of Switches, Decisions, and Other Discontinuous Behaviour (Springer, Berlin, 2019)

    Google Scholar 

  36. H. Jiang, A.S.E. Chong, Y. Ueda, M. Wiercigroch, Grazing-induced bifurcations in impact oscillators with elastic and rigid constraints. Int. J. Mech. Sci. 127, 204–214 (2017)

    Article  Google Scholar 

  37. M. Kapitaniak, H. Vaziri, J. Paez Chavez, N. Krishnan, M. Wiercigroch, Unveiling complexity of drill–string vibrations: experiments and modelling. Int. J. Mech. Sci. 101–102, 324–337 (2015)

    Article  Google Scholar 

  38. G. Karlebach, R. Shamir, Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008)

    Article  Google Scholar 

  39. J. Krim, Friction at macroscopic and microscopic length scales. Am. J. Phys. 70, 890–897 (2002)

    Article  Google Scholar 

  40. V. Kulebakin, On theory of vibration controller for electric machines. Theor. Exp. Electon 4 (1932, in Russian)

    Google Scholar 

  41. Yu.A. Kuznetsov, S. Rinaldi, A. Gragnani, One-parameter bifurcations in planar Filippov systems. Int. J. Bifurcation Chaos 13, 2157–2188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Lande, A quantitative genetic theory of life history evolution. Ecology 63, 607–615 (1982)

    Article  Google Scholar 

  43. J. Larmor, Sir George Gabriel Stokes: Memoir and Scientific Correspondence, vol. 1 (Cambridge University Press, Cambridge, 1907)

    Google Scholar 

  44. A.I. Lur’e, V.N. Postnikov, On the theory of stability of control systems. Appl. Math. Mech. 8(3) (1944, in Russian)

    Google Scholar 

  45. A. Machina, R. Edwards, P. van den Dreissche, Singular dynamics in gene network models. SIADS 12(1), 95–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Mestl, E. Plahte, S.W. Omholt, A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol. 176, 291–300 (1995)

    Article  MATH  Google Scholar 

  47. E.M. Navarro-López, R. Suárez, Modelling and analysis of stick-slip behaviour in a drillstring under dry friction. Congreso Anual de la AMCA (2004), pp. 330–335

    Google Scholar 

  48. E.M. Navarro-López, R. Suárez, Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings, in Proceedings of the 2004 IEEE International Conference on Control Applications (Taipei, 2004), pp. 1454–1460

    Google Scholar 

  49. Yu.I. Neimark, S.D. Kinyapin, On the equilibrium state on a surface of discontinuity. Izv. VUZ. Radiofizika 3, 694–705 (1960)

    Google Scholar 

  50. G. Nikolsky, On automatic stability of a ship on a given course. Proc. Central Commun. Lab. 1, 34–75 (1934, in Russian)

    Google Scholar 

  51. J. Nussbaum, A. Ruina, A two degree-of-freedom earthquake model with static/dynamic friction. Pure Appl. Geophys. 125(4), 629–656 (1987)

    Article  Google Scholar 

  52. H. Olsson, K.J. Astrom, C.C. de Wit, M. Gafvert, P. Lischinsky, Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

    Article  MATH  Google Scholar 

  53. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  54. E. Plahte, S. Kjøglum, Analysis and generic properties of gene regulatory networks with graded response functions. Physica D 201, 150–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. F. Plestan, Y. Shtessel, V. Brégeault, A. Poznyak, New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. K. Popp, P. Stelter, Stick-slip vibrations and chaos. Philos. Trans. R. Soc. A 332, 89–105 (1990)

    MATH  Google Scholar 

  57. T. Putelat, J.R. Willis, J.H.P. Dawes, On the seismic cycle seen as a relaxation oscillation. Philos. Mag. 28–29(1–11), 3219–3243 (2008)

    Article  Google Scholar 

  58. T. Putelat, J.H.P. Dawes, J.R. Willis, On the microphysical foundations of rate-and-state friction. J. Mech. Phys. Solids 59(5), 1062–1075 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Röttger, U. Rückert, J. Taubert, J. Baumbach, How little do we actually know? On the size of gene regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1293–1300 (2012)

    Article  Google Scholar 

  60. T.I. Seidman, The residue of model reduction. Lect. Notes Comput. Sci. 1066, 201–207 (1996)

    Article  Google Scholar 

  61. T.I. Seidman, Some aspects of modeling with discontinuities. Int. J. Evol. Equ. 3(4), 419–434 (2007)

    MathSciNet  MATH  Google Scholar 

  62. O.V. Sergienko, D.R. Macayeal, R.A. Bindschadler, Stick–slip behavior of ice streams: modeling investigations. Ann. Glaciol. 50(52), 87–94 (2009)

    Article  Google Scholar 

  63. J. Shi, J. Guldner, V.I. Utkin, Sliding Mode Control in Electro-Mechanical Systems (CRC Press, Boca Raton, 1999)

    Google Scholar 

  64. L. Shih-Che, C. Yon-Ping, Smooth sliding-mode control for spacecraft attitude tracking maneuvers. J. Guid. Control. Dyn. 18(6), 1345–1349 (1995)

    Article  MATH  Google Scholar 

  65. M. Sorensen, S. DeWeerth, G. Cymbalyuk, R.L. Calabrese, Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. J. Neurosci. 24(23), 5427–5438 (2004)

    Article  Google Scholar 

  66. J. Sotomayor, M.A. Teixeira, Regularization of discontinuous vector fields, in Proceedings of the International Conference on Differential Equations (Lisboa, 1996), pp. 207–223

    Google Scholar 

  67. D. Tabor, Triobology - the last 25 years. a personal view. Tribol. Int. 28(1), 7–10 (1995)

    Google Scholar 

  68. M.A. Teixeira, Structural stability of pairings of vector fields and functions. Bull. Braz. Math. Soc. 9(2), 63–82 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  69. M.A. Teixeira, On topological stability of divergent diagrams of folds. Math. Z. 180, 361–371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  70. M.A. Teixeira, Generic singularities of 3D piecewise smooth dynamical systems, in Advances in Mathematics and Applications (2018), pp. 373–404

    Google Scholar 

  71. G.A. Tomlinson, A molecular theory of friction. Philos. Mag. 7(7), 905–939 (1929)

    Article  Google Scholar 

  72. Y. Tsypkin, Theory of Relay Control Systems (Gostechizdat, Moscow, 1955, in Russian)

    Google Scholar 

  73. V.I. Utkin, Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22, 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  74. V.I. Utkin, Sliding modes and their application in variable structure systems, volume (Translated from the Russian). MiR (1978)

    Google Scholar 

  75. V.I. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  76. J. Wojewoda, S. Andrzej, M. Wiercigroch, T. Kapitaniak, Hysteretic effects of dry friction: modelling and experimental studies. Philos. Trans. R. Soc. A 366, 747–765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  77. J. Woodhouse, T. Putelat, A. McKay, Are there reliable constitutive laws for dynamic friction? Philos. Trans. R. Soc. A 373, 20140401 (2015)

    Article  Google Scholar 

  78. H. Xu, M.D. Mirmirani, P.A. Ioannou, Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control. Dyn. 27(5), 829–38 (2004)

    Article  Google Scholar 

  79. F.R. Zypman, J. John Ferrante, M. Jansen, K. Scanlon, P. Abel, Evidence of self-organized criticality in dry sliding friction. J. Phys. Condens. Matter 15, L191–L196 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeffrey, M.R. (2020). Mathematics for a Nonsmooth World. In: Modeling with Nonsmooth Dynamics. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-35987-4_1

Download citation

Publish with us

Policies and ethics