Skip to main content

Abstract

Soil microbial community is crucial for plant health. They all represent a second much larger genome associated to plants. Microbes vary in their number and diversity which is in order of tens of thousands species in fertile agricultural soils. In general, soil microbial communities include bacteria, fungi, algae, protozoa, nematodes, and microarthropods. Most of them are neutral in relation to their effects on plants. They are important players of the food web as they utilize most of the carbon released by roots as rhizodeposits. Less than ten percent of the total rhizosphere microbes exert beneficial or harmful effects on plants. Pathogenic microorganisms in soil include fungi, oomycetes, bacteria, and nematodes while the beneficial microbial community consists of symbiotic, associative symbiotic and free-living plant growth promoting bacteria (PGPB), arbuscular mycorrhizal fungi and algae. Recent research in plant-microbe interactions showed that host specific microbial species are associated with different plant species in the same soil. The number and diversity of beneficial and deleterious microorganisms depend on the quality and quantity of root exudates which, along with soil physico-chemical properties, give shape to the rhizosphere microbial community structure. This chapter highlights the importance of rhizosphere microbial communities in relation to plant growth. Recent advances on soil-plant-microbe interactions in a balanced and optimized manner are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, S., Senthilkumar, R., & Arjunan, S. (2014). Isolation and molecular characterization of microorganisms producing novel antibiotics from soil sample. European Journal of Experimental Biology, 4, 149–155.

    CAS  Google Scholar 

  • Abdel-Lateif, K., Bogusz, D., & Hocher, V. (2012). The role of flavonoids in the establishment of plant roots endosymbioses with Arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling & Behavior, 7, 636–641.

    Article  CAS  Google Scholar 

  • Abdul-Kareem. (2012). Parasitism and disease development (1st ed.). Peshawar: Khyber Pakhtunkhwa Agricultural University.

    Google Scholar 

  • Ahmad, I., Ahmad, F., & John, P. (2011). Microbes and microbial technology: Agricultural and environmental applications. New York: Springer. https://doi.org/10.1007/978-1-4419-7931-5-1.

    Book  Google Scholar 

  • Ahmed, E. A., Enas, A. H., Tobgy, K. M. K. E., & Ramadan, E. M. (2014). Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Annals of Agricultural Sciences, 5, 273–280.

    Article  Google Scholar 

  • Aira, M., Gómez-Brandón, M., Lazcano, C., Bååth, E., & Domínguez, J. (2010). Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biology and Biochemistry, 42, 2276–2281.

    Article  CAS  Google Scholar 

  • Ajayi, A. A., Onibokun, E. A., George, F. O. A., & Atolagbe, O. M. (2016). Isolation and characterization of chitinolytic bacteria for chitinase production from the african catfish, Clarias gariepinus. Research Journal of Microbiology, 11, 119–125.

    Article  CAS  Google Scholar 

  • Akhtar, N., Naveed, M., Khalid, M., Nisar, A., Rizwan, M., & Siddique, S. (2018). Effect of bacterial consortia on growth and yield of maize grown in Fusarium infested soil. Soil and Environment, 37, 35–44.

    Article  CAS  Google Scholar 

  • Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in Arbuscular mycorrhizal fungi. Nature, 435, 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Alavo, T. B. C., Boukari, S., Fayalo, D. G., & Bochow, H. (2015). Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: Impact on insect density and cotton yield in North Benin. Cogent Food & Agriculture, 1, 1–8.

    Article  CAS  Google Scholar 

  • Alkooranee, J. T., Aledan, T. R., Ali, K. A., Lu, G., Zhang, X., Wu, J., et al. (2017). Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS One. https://doi.org/10.1371/journal.pone.0168850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson, P. F. (2012). Secondary metabolites associated with plant disease, plant defense and biocontrol (Doctoral Thesis Swedish University of Agricultural Sciences).

    Google Scholar 

  • Andrade, S. A. L., Domingues, A. P., & Mazzafera, J. P. (2015). Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere, 134, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Arafat, Y., Wei, X., Jiang, Y., Chen, T., Saqib, H. S. A., Lin, S., & Lin, W. (2017). Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18081727.

    Article  PubMed Central  CAS  Google Scholar 

  • Arora, N. K., Khare, E., & Oh, J. H. (2008). Diverse mechanisms adopted by Pseudomonas fluorescent PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World Journal of Microbiology & Biotechnology, 24, 581–585.

    Article  Google Scholar 

  • Asadhi, S., Reddy, B. V. B., Sivaprasad, Y., Prathyusha, M., Krishna, T. M., & Kumar, K. V. K. (2013). Characterization, genetic diversity and antagonistic potential of 2, 4-diacetylphloroglucinol producing Pseudomonas fluorescens isolates in groundnut-based cropping systems of Andhra Pradesh, India. Archives of Phytopathology and Plant Protection. https://doi.org/10.1080/03235408.2013.782223.

    Article  CAS  Google Scholar 

  • Ayoubi, N., Doustmorad, Z., & Mirabolfathy, M. (2014). Evaluation of β-1,3-glucanase and β-1,4-glucanase enzymes production in some Trichoderma species. Archives of Phytopathology and Plant Protection. https://doi.org/10.1080/03235408.2013.862457.

    Article  CAS  Google Scholar 

  • Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 198, 264–273.

    Article  CAS  PubMed  Google Scholar 

  • Baig, K. S., Arshad, M., Khalid, A., Hussain, S., Abbas, M. N., & Imran, M. (2014). Improving growth and yield of maize through bioinoculants carrying auxin production and phosphate solubilizing activity. Soil and Environment, 33, 159–168.

    Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Barda, O., Shalev, O., Alster, S., Buxdorf, K., Gafni, A., & Levy, M. (2015). Pseudozyma aphidis induces salicylic-acid-independent resistance to clavibacter michiganensis in tomato plants. The American Phytopathological Society, 99, 621–626.

    CAS  Google Scholar 

  • Bekemakhanova, N. E., & Shemshura, O. N. (2001). Alkaloids of microscopic fungi for plant protection. Bioactive fungal metabolites. Impact and exploitation. In: International Symposium by British Mycological Society.

    Google Scholar 

  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bhatt, P. V., & Vyas, B. R. M. (2014). Screening and characterization of plant growth and health promoting rhizobacteria. International Journal of Current Microbiology and Applied Sciences, 3, 139–155.

    CAS  Google Scholar 

  • Birhane, E., Sterck, F. J., Fetene, M., & Bongers, F. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecology, 169, 895–904.

    Article  Google Scholar 

  • Biswas, K., Kumar, R., Prakash, V., Tarafdar, A., & Kumar, S. (2016). Soil microbes and their interaction with plants. In Rituparna & A. B. Mitra (Eds.), Plant pathogen interaction: Recent trends (1st ed.). New York: Springer.

    Google Scholar 

  • Bogino, P. C., Oliva, M. L. M., Sorroche, F. G., & Giordano, W. (2013). The role of bacterial biofilms and surface components in plant-bacterial associations. International Journal of Molecular Sciences, 14, 15838–15859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brahmbhatt, D. N. H., & Kalasariya, H. S. (2015). Effect of algae on seedling growth of “Queen of Forages”. International Journal of Engineering Research and General Science, 3, 827–833.

    Google Scholar 

  • Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, V. L. E., Ahmadinejad, N., Assenza, F., et al. (2012). Revealing structure and assembly cues for Arabidopsis root inhabiting bacterial microbiota. Nature, 488, 91–95.

    Article  CAS  PubMed  Google Scholar 

  • Carvalhais, L. C., Dennis, P. G., Badri, D. V., Tyson, G. W., Vivanco, J. M., & Schenk, P. M. (2013). Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PloS ONE, 8. https://doi.org/10.1371/journal.pone.0056457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cely, M. V., Siviero, M. A., Emiliano, J., Spago, F. R., Freitas, V. F., Barazetti, A. R., et al. (2016). Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.01708.

  • Cendales, C. T., Rodriguez González, C. A., Villota Cuásquer, C. P., Tapasco Alzate, O. A., & Hernández, R. A. (2017). Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L). Acta Biológica Colombiana, 22, 37–44.

    Article  Google Scholar 

  • Chaiharn, M., Chunhaleuchanon, S., & Lumyong, S. (2009). Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World Journal of Microbiology & Biotechnology, 25, 1919–1928.

    Article  Google Scholar 

  • Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2013). Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 8, 790–803.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., et al. (2017). Combined inoculation with multiple Arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.02516.

  • Chen, H., Wu, H., Yan, B., Zhao, H., Liu, F., Zhang, H., et al. (2018). Core microbiome of medicinal plant Salvia miltiorrhiza seed: A rich reservoir of beneficial microbes for secondary metabolism. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19030672.

    Article  PubMed Central  CAS  Google Scholar 

  • Choudhary, D. K., Anil, P., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, R. L., Kumar, D., Shivay, Y. S., Anand, A., & Nain, L. (2013). Yield and quality of rice (Oryza sativa) hybrids grown by SRI method with and without plant growth promoting rhizobacteria. Indian Journal of Agronomy, 58, 430–433.

    Google Scholar 

  • Chowdhury, S. P., Schmid, M., Hartmann, A., & Tripathi, A. K. (2009). Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass. European Journal of Soil Biology, 45, 114–122.

    Article  CAS  Google Scholar 

  • Colonna, E., Rouphael, Y., De Pascale, S., & Barbieri, G. (2015). Effects of mycorrhiza and plant growth promoting rhizobacteria on yield and quality of artichoke. Acta Horticulturae, 1147, 43–50.

    Google Scholar 

  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., Beltrán-Peña, E., Herrera-Estrella, A., & López-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signaling & Behavior, 6, 1554–1563.

    Article  CAS  Google Scholar 

  • Dashti, N. H., Ali, N. Y., Cherian, V. M., & Montasser, M. S. (2012). Application of plant growth promoting rhizobacteria (PGPR) in combination with a mild strain of Cucumber mosaic virus (CMV) associated with viral satellite RNAs to enhance growth and protection against a virulent strain of CMV in tomato. Canadian Journal of Plant Pathology, 34, 177–186.

    Article  Google Scholar 

  • Datta, B., & Chakrabartty, P. K. (2013). Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. Biotechnology, 4, 391–401.

    Google Scholar 

  • Dennis, P. G., Miller, A. J., Clark, I. M., Taylor, R. G., Valsami-Jones, E., & Hirsch, P. R. (2008). A novel method for sampling bacteria on plant root and soil surfaces at the microhabitat scale. Journal of Microbiological Methods, 75, 12–18.

    Article  PubMed  Google Scholar 

  • Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72, 313–327.

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya, M., & Vasudev, M. (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: A Review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85. https://doi.org/10.1007/s40011-013-0297-0.

    Google Scholar 

  • Dotaniya, M. L., Meena, H. M., Lata, M., & Kumar, K. (2013). Role of phytosiderophores in iron uptake by plants. Agricultural Science Digest, 33, 73–76.

    CAS  Google Scholar 

  • El Kiyum, S. S. S. (2017). Influence of effective microorganisms on qualities of tomatoes (Lycopersicon esculentum) grown on tropical loam soil. Journal of Natural Sciences Research, 7, 53–56.

    Google Scholar 

  • Elahi, I. F. E., Mridha, M. A. U., & Aminuzzman, F. M. (2012). Role of AMF on plant growth, nutrient uptake arsenic toxicity and chlorophyll content of chili grown in arsenic amended soil. Bangladesh Journal of Agricultural Research, 37, 635–644.

    Article  Google Scholar 

  • Elsharkawy, M., Shivanna, M., Meera, M., & Mitsuro, H. (2015). Mechanism of induced systemic resistance against anthracnose disease in cucumber by plant growth-promoting fungi. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65, 1–13.

    Google Scholar 

  • Etminani, F., & Harighi, B. (2018). Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathology Journal, 34, 208–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes, E. G., Valerio, H. M., Feltrin, T., & Van Der Sand, S. T. (2012). Variability in the production of extracellular enzymes by entomopathogenic fungi grown on different substrates. Brazilian Journal of Microbiology, 43, 827–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodriguez, M. X., & Barea, J. M. (2010). Evaluation of actinomycete strains for key traits related with plant growth-promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217.

    Article  Google Scholar 

  • Ganesan, S., Swaminathan, U., & Muthukumar, A. (2009). Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopathologia Mediterranea, 48, 214–225.

    Google Scholar 

  • Gao, M., Yao, S., Liu, Y., Yu, H., Xu, P., Sun, W., Pu, Z., Hou, H., & Bao, Y. (2018). Transcriptome analysis of tomato leaf spot pathogen fusarium proliferatum: De novo assembly, expression profiling, and identification of candidate effectors. International Journal of Molecular Sciences, 9(1), 31.

    Article  CAS  Google Scholar 

  • Ghodsalavi, B., Ahmadzadeh, M., Soleimani, M., Brokanloui, P. M., & Taghizad-Farid, R. (2013). Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. AJCS, 7, 338–344.

    CAS  Google Scholar 

  • Ghorpade, V. M., & Gupta, S. G. (2016). Siderophore production by Rhizobium nepotum isolated from “Stem nodule of Aeschynomene indica”. International Journal of Advanced Research in Biological Sciences, 3, 105–108.

    CAS  Google Scholar 

  • Ghosh, A., Arif, T. U., Chamely, S. G., Rezwanul, H. M., Rahman, M., & Bhuiyan, A. H. (2017a). Comparative effect of arbuscular mycorrhiza, cowdung and phosphorus on growth and yield contributing characters of red amaranth (Amaranthus tricolor L.) and Indian spinach (Basella alba L.). Tropical Plant Research, 4, 254–263.

    Article  Google Scholar 

  • Ghosh, K. S., Banerjee, S., & Sengupta, C. (2017b). Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. Journal of Biopesticides, 10, 105–112.

    CAS  Google Scholar 

  • Gopalakrishnan, S., Vadlamudi, S., Bandikinda, P., Sathya, A., Vijayabharathi, R., Rupela, O., et al. (2014). Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiological Research, 169, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan, S., Srinivas, V., Alekhya, G., Prakash, B., Kudapa, H., & Varshney, R. K. (2015). Evaluation of broad-spectrum Streptomyces sp. for plant growth promotion traits in chickpea (Cicer arietinum L.). Philippine Agricultural Scientist, 98, 270–278.

    Google Scholar 

  • Goswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., & Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8, 281–290.

    Article  CAS  Google Scholar 

  • Guiñazú, L. B., Andres, J. A., DelPapa, M. F., Pistorio, M., & Rosas, S. B. (2010). Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilising bacteria and Sinorhizobium meliloti. Biology and Fertility of Soils, 46, 185–190.

    Article  Google Scholar 

  • Hahm, M. S., Sumayo, M., Hwang, Y. J., Jeon, S. A., Park, S. J., Lee, J. Y., et al. (2012). Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions. Journal of Microbiology, 50, 380–385.

    Article  PubMed  Google Scholar 

  • Han, K. I., Patnaik, B. B., Kim, Y. H., Kwon, H. J., Han, Y. S., & Han, M. D. (2014). Isolation and characterization of chitinase-producing Bacillus and Paenibacillus strains from salted and fermented shrimp. Journal of Food Science. https://doi.org/10.1111/1750-3841.12387.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, A., Rothballer, M., Schmid, M., & Hiltner, L. (2008). A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.

    Article  CAS  Google Scholar 

  • Hartmann, A., Schmid, M., Van Tuinen, D., & Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235–257.

    Article  CAS  Google Scholar 

  • Hassan, F., Qayyum, A., Malik, W., Maqbool, A., Hassan, M., Rehman, M. A., Shoaib, M., et al. (2016). Cotton leaf curl virus (CLCuV) disease in pakistan: A critical review. Applied Sciences and Business Economics, 3, 8–14.

    Google Scholar 

  • Hayat, S., Faraz, A., & Faizan, M. (2017). Root exudates: Composition and impact on plant-microbe interaction. In I. Ahmad & F. M. Husain (Eds.), Biofilms in plant and soil health. Hoboken: John Wiley & Sons Ltd. https://doi.org/10.1002/9781119246329.ch10.

    Chapter  Google Scholar 

  • Hitendra, J., Sohel, S., & Riyaz, S. (2017). Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens. An overview. In S. Mehnaz (Ed.), Rhizotrophs: Plant growth promotion to bioremediation (Microorganisms for sustainability) (Vol. 2, pp. 183–203). Singapore: Springer.

    Google Scholar 

  • Horiuchi, J., Prithiviraj, B., Bais, H., Kimball, B., & Vivanco, J. (2005). Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta, 222, 848–857.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. M., Sultana, F., & Islam, S. (2017). Plant growth-promoting fungi (PGPF): Èhytostimulation and induced systemic resistance. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 135–191). Singapore: Springer. https://doi.org/10.1007/978-981-10-6593-4-6.

    Chapter  Google Scholar 

  • Hou, M. P., & Babalola, O. O. (2013). Evaluation of plant growth promoting potential of four rhizobacterial species for indigenous system. Journal of Central South University, 20, 164–171.

    Article  CAS  Google Scholar 

  • Huang, X. F., Chaparro, J., Reardon, K., Zhang, R., Shen, Q., & Jorge, M. V. (2014). Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany, 92. https://doi.org/10.1139/cjb-2013-0225.

    Article  Google Scholar 

  • Igiehon, N. O., & Babalola, O. O. (2017). Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology, 101, 4871–4881.

    Article  CAS  PubMed  Google Scholar 

  • Igiehon, N. O., & Babalola, O. O. (2018). Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph15040574.

  • Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science. https://doi.org/10.3389/fpls2017.01617.

  • Jarak, M., Nastasija, M., Dragana, B., Dragana, J., Timea, H. J., & Dragana, S. (2012). Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology Research, 6, 5683–5690.

    CAS  Google Scholar 

  • Jeffrey, B., John, R. T., Daniel, R., Inga, A. Z., & Jude, L. (2010). Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry, 42, 831–841.

    Article  CAS  Google Scholar 

  • Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant and Soil, 321, 5–33.

    Article  CAS  Google Scholar 

  • Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P., & Ongena, M. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. MPMI, 22, 456–468.

    Article  CAS  PubMed  Google Scholar 

  • Junaid, J. M., Dar, N. A., Bhat, T. A., Bhat, A. H., & Bhat, M. A. (2013). Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Plant, Animal and Environmental Sciences, 1, 39–57.

    Google Scholar 

  • Kaiser, C., Koranda, M., Kitzler, B., Fuchslueger, L., Schnecker, J., Schweiger, P., et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 187, 843–858.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, N., & Sachdeva, S. (2013). Rhizosphere: Its structure, bacterial diversity and significance. Reviews in Environmental Science and Biotechnology, 13, 63–77.

    Google Scholar 

  • Kim, K. R., Owens, G., Naidu, R., & Kwon, S. L. (2010). Influence of plant roots on rhizosphere soil solution composition of long-term contaminated soils. Geoderma, 155, 86–92.

    Article  CAS  Google Scholar 

  • Kim, S. J., Eo, J. K., Lee, E. H., Park, H., & Eom, A. H. (2017). Effects of Arbuscular Mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology, 45, 20–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kollmann, J., Banuelos, M. J., & Nielsen, S. L. (2007). Effects of virus infection on growth of the invasive alien Impatiens glandulifera. Preslia, 79, 33–44.

    Google Scholar 

  • Krishnaveni, B., & Ragunathan, R. (2014). Chitinase production from marine wastes by Aspergillus terreus and its application in degradation studies. International Journal of Current Microbiology and Applied Sciences, 3, 76–82.

    CAS  Google Scholar 

  • Krithika, S., & Chellaram, C. (2016). Isolation, screening, and characterization of chitinase producing bacteria from marine wastes. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 34–36.

    Article  CAS  Google Scholar 

  • Kumar, A., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR). A promising approach for disease management. In S. Singh & D. P. Singh (Eds.), Microbes and environmental management (pp. 195–209). New Delhi: Studium Press.

    Google Scholar 

  • Kumar, H., Bajpai, V. K., & Dubey, R. C. (2010). Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protection, 29, 591–598.

    Article  Google Scholar 

  • Kumar, G. P., Desai, S., Leo, D. A. E., Hask, M., & Reddy, G. (2012). Plant growth promoting Pseudomonas spp. from diverse agro-ecosystems of india for Sorghum bicolor L. Journal of Biofertilizers and Biopesticides, S7, 001. https://doi.org/10.4172/2155-6202.S7-001.

    Article  Google Scholar 

  • Kuppireddy, V., Uversky, V., Toh, S., Tsai, M. C., Beckerson, W., Cahill, C., et al. (2017). Identification and initial characterization of the effectors of an anther smut fungus and potential host target proteins. International Journal of Molecular Sciences, 8(11), 2489. https://doi.org/10.3390/ijms18112489.

    Article  CAS  Google Scholar 

  • Lee, J., Postmaster, A., Soon, H. P., Keast, D., & Carson, K. C. (2012). Siderophore production by Actinomycetes isolates from two soil sites in Western Australia. Biometals, 25, 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Lehner, S. M., Atanasova, L., Neumann, N. K. N., Krska, R., Lemmens, M., Druzhinina, I. S., & Schuhmachera, R. (2013). Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Applied and Environmental Microbiology, 79, 18–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Peng, M., Liu, Z., & Shah, S. S. (2017). The role of soil microbes in promoting plant growth. Molecular Microbiology Research, 7, 30–37.

    Google Scholar 

  • Liang, J. F., An, J., Gao, J. Q., Zhang, X. Y., & Yu, F. H. (2018). Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying rewetting cycles. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0191999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling, S. K., Rugang, L., & Zhang, W. (2014). First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada. Plant Disease, 98, 701–701.

    PubMed  Google Scholar 

  • Liu, H. W., Luo, L. X., Li, J. Q., Liu, P. F., Chen, X. Y., & Hao, J. J. (2013). Pollen and seed transmission of Cucumber green mottle mosaic virus in cucumber. Plant Pathology, 63, 72–77.

    Article  CAS  Google Scholar 

  • Lobmann, M. T., Vetukuri, R. R., Zinger, L. D., Alsanius, B. W., Grenville-Briggs, L. J., & Walter, A. J. (2016). The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Applied Soil Ecology, 107, 57–65.

    Article  Google Scholar 

  • Makut, M., & Owolewa, O. A. (2011). Antibiotic-producing fungi present in the soil environment of Keffi metropolis, Nasarawa state, Nigeria. Trakia Journal of Sciences, 9, 33–39.

    Google Scholar 

  • Martin, C. M., Eilyn, M., García, S. C., Berkis, R., SA, M., Tatiana, P., Mora, L. M., & Yelenys, A. C. (2015). The effects of plant growth promoting Bacillus pumilus CCIBP- C5 on ‘Grande naine’ (Musa AAA) plants in acclimatization stage. Biotecnología Vegetal, 15, 151–156.

    Google Scholar 

  • Martínez-Medina, A., Fernandez, I., Lok, G. B., Pozo, M. J., Pieterse, C. M. J., Saskia, C., & Van Wees, S. C. (2016). Shifting from priming of salicylic acid to jasmonic acid regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytologist, 3(3), 1363–1377.

    Article  CAS  Google Scholar 

  • Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293–319.

    Article  Google Scholar 

  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., et al. (2011). Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science, 332, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Miyasaki, Y., Rabenstein, J. D., Rhea, J., Crouch, M. L., Mocek, U. M., Kittell, P. E., et al. (2013). Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PLoS ONE, 8, e61594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moe, L. A. (2013). Amino acids in the rhizosphere: From plants to microbes. American Journal of Botany, 100, 1692–1705.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, H. I., & Gomaa, E. Z. (2012). Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica, 50, 263–272.

    Article  CAS  Google Scholar 

  • Mohammadi, K., Khalesro, S., Sohrabi, Y., & Heidari, G. (2011). A review: Beneficial effects of the mycorrhizal fungi for plant growth. Journal of Applied Environmental and Biological Sciences, 1, 310–319.

    Google Scholar 

  • Montalbán, B., Thijs, S., Lobo, M. C., Weyens, N., Ameloot, M., Vangronsveld, J., & Pérez-Sanz, A. (2017). Cultivar and metal-specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. International Journal of Molecular Sciences, 18, E2026. https://doi.org/10.3390/ijms18102026.

    Article  CAS  PubMed  Google Scholar 

  • Moriones, E., Praveen, S., & Chakraborty, S. (2017). Tomato leaf curl new delhi virus: An emerging virus complex threatening vegetable and fiber crops. Viruses, 9, E264. https://doi.org/10.3390/v9100264.

    Article  CAS  PubMed  Google Scholar 

  • Muller, M. S., Scheu, S., & Jousset, A. (2013). Protozoa drive the dynamics of culturable biocontrol bacterial communities. PLoS One, 8, 1–6.

    Google Scholar 

  • Muller, D. B., Vogel, C., Bai, Y., & Vorholt, J. A. (2016). The plant microbiota: Systems-level insights and perspectives. In N. M. Bonini (Ed.), Annual review of genetics (Vol. 50, pp. 211–234). Palo Alto: Annual Reviews.

    Google Scholar 

  • Nassal, D., Spohn, M., Eltlbany, N., Jacquiod, S., Smalla, K., Marhan, S., & Kandeler, E. (2018). Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant and Soil, 427, 17–37.

    Article  CAS  Google Scholar 

  • Naznin, H. A., Kimura, M., Miyazawa, M., & Hyakumachi, M. (2013). Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes and Environments, 28, 42–49.

    Article  PubMed  Google Scholar 

  • Naznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9. https://doi.org/10.1371/journal.pone.0086882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann, G., George, T. S., & Plassard, C. (2009). Strategies and methods for studying the rhizosphere-the plant science toolbox. Plant and Soil, 321, 43–456.

    Article  CAS  Google Scholar 

  • Ngoma, L., Esau, B., & Babalola, O. O. (2013). Isolation and characterization of beneficial indigenous endophytic bacteria for plant growth promoting activity in Molelwane Farm, Mafikeng, South Africa. African Journal of Biotechnology, 12, 4105–4114.

    CAS  Google Scholar 

  • Nguyen, M. L., Spaepen, S., Jardin, P. D., & Delaplace, P. (2019). Biostimulant effects of rhizobacteria on wheat growth and nutrient uptake depend on nitrogen application and plant development. Archives of Agronomy and Soil Science, 65, 58–73.

    Article  CAS  Google Scholar 

  • Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy, Society and Environment, 15, 327–337.

    Google Scholar 

  • Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2012). Responses of root architecture development to low phosphorus availability: A review. Annals of Botany, 112, 391–408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortas, I. (2012). The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research, 125, 35–48.

    Article  Google Scholar 

  • Pandya, M., Rajput, M., Rajkumar, S., Najmeh, A., Doustmorad, Z., & Mansoureh, M. (2015). Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiate. Microbiology, 84, 80–89.

    Article  CAS  Google Scholar 

  • Patel, T. S., & Desai, P. B. (2015). Isolation and screening of PGPR from rhizospheric and non rhizospheric soil of Bt-cotton. Indo-American Journal of Agricultural and Veterinary Sciences, 3, B1110–B1120.

    Google Scholar 

  • Patel, P. R., Shaikh, S. S., & Sayyed, R. Z. (2018). Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environmental Sustainability, 1, 81–87.

    Article  Google Scholar 

  • Patil, G. B., Lakshman, L. H., Romana, M., & Agadi, B. S. (2013). Effect of co-inoculation of AM fungi and two beneficial microorganisms on growth and nutrient uptake of Eleusine coracana Gaertn. (Finger millet). Asian Journal of Plant Science & Research, 3, 26–30.

    CAS  Google Scholar 

  • Pazarlar, S., Gümüş, M., & Öztekin, G. B. (2013). The effects of tobacco mosaic virus infection on growth and physiological parameters in some pepper varieties (Capsicum annuum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41, 427–443.

    Article  Google Scholar 

  • Perez-Montano, F., Alias-Villegas, C., Bellogín, R. A., del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., et al. (2014). Plant growth promotion in cereal and leguminous agricultural important plants from microorganism capacities to crop production. Microbiological Research, 169, 325–336.

    Article  CAS  PubMed  Google Scholar 

  • Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Pindi, P. K., Sultana, T., & Vootla, P. K. (2014). Plant growth regulation of Bt-cotton through Bacillus species. Biotechnology, 4, 305–315.

    Google Scholar 

  • Pirlak, L., & Murat, K. (2009). Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. Journal of Plant Nutrition, 32, 1173–1184.

    Article  CAS  Google Scholar 

  • Pishchik, V., Vorobyev, N., Ostankova, Y., Semenov, A., Areg, A., Popov, A., et al. (2018). Impact of Bacillus subtilis on tomato plants growth and some biochemical characteristics under combined application with humic fertilizer. International Journal of Plant & Soil Science, 22, 1–12.

    Article  Google Scholar 

  • Potshangbam, M., Devi, S. I., Sahoo, D., & Strobel, G. A. (2017). Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.00325.

  • Prakash, O. M., Sharma, R., Sharma, P., & Kerthikeyan, N. (2015). Role of microorganisms in plant nutrition and health. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: From basics to advances. New Delhi: Springer.

    Google Scholar 

  • Pulatov, A. A. S., Khudayberdi, N., Maksud, A., & Botir, K. (2016). Effect of biofertilizers on growth and yield of cotton in different soil conditions. Cotton Genomics and Genetics, 7, 1–7. https://doi.org/10.5376/cgg.2016.07.0001.

    Article  Google Scholar 

  • Qiano, J., Xiang, Y., Liang, X., Liu, Y., Borriss, R., & Liu, Y. (2017). Addition of plant growth promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. Microbiology, 117, 131. https://doi.org/10.1186/s12866-017-1039-x.

    Article  CAS  Google Scholar 

  • Rajendiran, S., Coumar, M. V., Kundu, S., Dotaniya, M. L., & Rao, A. S. (2012). Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agroecosystems. Current Science, 103, 911–920.

    Google Scholar 

  • Rawat, S. (2015). Food spoilage: Microorganisms and their prevention. Asian Journal of Plant Science & Research, 5, 47–56.

    CAS  Google Scholar 

  • Rillig, M. C., Caldwell, B. A., Wosten, H. A. B., & Sollins, P. (2007). Role of proteins in soil carbon and nitrogen storage: Control of persistence. Biogeochemistry, 85, 25–44.

    Article  CAS  Google Scholar 

  • Ritter, C., Camassola, M., Zampieri, D., Silveira, M. M., & Dillon, A. J. P. (2013). Cellulase and xylanase production by Penicillium echinulatum in submerged media containing cellulose amended with sorbitol. Enzyme Research, 2013, 1–9. https://doi.org/10.1155/2013/240219.

    Article  CAS  Google Scholar 

  • Rodrigues, A. A., Forzani, M. V., Soares, R. D. S., Sibov, S. T., & Vieira, J. D. G. (2016). Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical, 46(2), 149–158.

    Article  Google Scholar 

  • Rosconi, F., Trovero, M. M., Souza, E., & Fabiano, E. (2015). Serobactins mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants. Environmental Microbiology, 18, 2523–2533. https://doi.org/10.1111/1462-2920.13202.

    Article  CAS  Google Scholar 

  • Ruchi, R. K., Kumar, A., Kumar, A., Patil, S., Thapa, S., & Kaur, M. (2012). Evaluation of plant growth promoting attributes and lytic enzyme production by Fluorescent Pseudomonas diversity associated with Apple and Pear. International Journal of Scientific and Research Publications, 2, 1–8.

    Google Scholar 

  • Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Castro-Longoria, E., Herrera-Estrella, A., & Casas-Flores, S. (2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonate and salicylate pathways. European Journal of Plant Pathology, 131, 15–26.

    Article  CAS  Google Scholar 

  • Sanchez-Lopez, A., Pintelon, I., Stevens, V., Imperato, V., Timmermans, J. P., Gonzalez-Chavez, C., et al. (2018). Seed endophyte microbiome of Crotalaria pumila unpeeled: Identification of plant-beneficial methylobacteria. International Journal of Molecular Sciences, 19, E291. https://doi.org/10.3390/ijms19010291.

    Article  CAS  PubMed  Google Scholar 

  • Sandilya, S. R. S. P., Bhuyan, P. M., Nageshappa, V., Gogoi, D. K., & Kardong, D. (2017). Impact of Pseudomonas aeruginosa MAJ PIA03 affecting the growth and phytonutrient production of castor, a primary host-plant. Journal of Soil Science and Plant Nutrition, 17, 499–5150.

    CAS  Google Scholar 

  • Santa-Rosa, P., Souza, A. L., Roque, R. A., Andrade, V. E., Filho, S. A., Adolfo, M., & Silva, N. (2017). Production of β-glucosidase and CMCase thermostables by Penicillium Sp. LMI01 isolated in the Amazon region. Electronic Journal of Biotechnology, 31, 84–92. https://doi.org/10.1016/j.ejbt.2017.11.005.

    Article  CAS  Google Scholar 

  • Sanwal, S. K., Venkataravanappa, V., & Singh, B. (2016). Resistance to bhendi yellow vein mosaic disease: A review. Indian Journal of Agricultural Sciences, 86, 835–843.

    CAS  Google Scholar 

  • Sayyed, R. Z., & Patel, P. R. (2011). Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa rzs3 vis-à-vis organophosphorus fungicide. Indian Journal of Microbiology, 51, 266–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirawski, J., & Perlin, M. H. (2018). Plant microbe interaction 2017-The good, the bad and the diverse. International Journal of Molecular Sciences, 9, 1374. https://doi.org/10.3390/ijms19051374.

    Article  CAS  Google Scholar 

  • Schneider, W. D. H., dos Reis, L., Camassola, M., & Dillon, A. J. P. (2014). Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources. BioMed Research International, 2014, 254863. https://doi.org/10.1155/2014/254863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwachtje, J., Karojet, S., Kunz, S., Brouwe, S., & van Dongen, J. T. (2012). Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Plant Signaling & Behavior, 7, 623–627.

    Article  CAS  Google Scholar 

  • Shakeel, M., Afroz, R., Muhammad, H., & Fauzia, H. (2015). Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati Rice (Oryza sativa) varieties. Frontiers in Microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.01286.

    Article  Google Scholar 

  • Shakeela, S., Padder, S. A., & Bhat, Z. A. (2017). Isolation and characterization of plant growth promoting rhizobacteria associated with medicinal plant Picrorhiza Kurroa. Journal of Pharmacognosy and Phytochemistry, 6, 157–168.

    CAS  Google Scholar 

  • Shariatmadari, Z., Hossein, R., Seyed, M., Hashtroudi, S., Ghassempour, M., & Aghashariatmadary, A. (2013). Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Science and Plant Nutrition, 59, 535–547.

    Article  CAS  Google Scholar 

  • Sharma, N., Sudarshan, Y., Sharma, R., & Singh, G. (2008). RAPD analysis of soil microbial diversity in western Rajasthan. Current Science, 94, 1058–1061.

    CAS  Google Scholar 

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 1–23.

    Article  CAS  Google Scholar 

  • Shukla, M., Patel, R. H., Verma, R., Deewan, P., & Dotaniya, M. L. (2013). Effect of bio-organics and chemical fertilizers on growth and yield of chickpea (Cicer arietinum L.) under middle Gujarat conditions. Vegetos, 26, 183–187.

    Google Scholar 

  • Shunmugam, S., Muralitharan, G., & Thajuddin, N. (2015). Cyanobacteria and algae: Potential sources of biological control agents used against phytopathogenic bacteria. In S. Shunmugam, G. Muralitharan, & N. Thajuddin (Eds.), Sustainable approaches to controlling plant pathogenic bacteria. New York: CRC Press. https://doi.org/10.1201/b18892-13.

    Chapter  Google Scholar 

  • Sial, N. L., Ahmed, A. S., Abbas, M., Irfan, M., & Depar, N. (2018). Growth and yield of wheat as affected by phosphate solubilizing bacteria and phosphate fertilizer. Pakistan Journal of Biotechnology, 15, 475–479.

    Google Scholar 

  • Singh, A. A., Gupta, R., Srivastava, M., Gupta, M. M., & Pandey, R. (2016). Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal. Physiology and Molecular Biology of Plants, 22, 253–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, D. P., Patil, J. H., Prabha, R., & Yandigeri, M. S. (2018). Actinomycetes as potential plant growth-promoting microbial communities. In Prasad et al. (Eds.), New and future developments in microbial biotechnology and bioengineering: Crop improvement through microbial biotechnology (pp. 27–38). New York: Elsevier.

    Google Scholar 

  • Somers, E., Vanderleyden, J., & Srinivasan, M. (2004). Rhizosphere bacterial signalling: A love parade beneath our feet. Critical Reviews in Microbiology, 304, 205–240.

    Article  CAS  Google Scholar 

  • Spanic, V., Marcek, T., Abicic, I., & Sarkanj, B. (2018). Effects of fusarium head blight on wheat grain and malt infected by Fusarium culmorum toxins. Toxins (Basel), 10, 17. https://doi.org/10.3390/toxins10010017.

    Article  CAS  Google Scholar 

  • Spence, C., Alff, E., Johnson, C., Ramos, C., Donofrio, N., Sundaresan, V., & Bais, H. (2014). Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology, 14, 130. https://doi.org/10.1186/1471-2229-14-130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreevidya, M., Gopalakrishnan, S., Kudapa, H., & Varshney, R. K. (2016). Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology, 47, 85–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, M. P., Gupta, S., & Sharm, Y. K. (2018). Detection of siderophore production from different cultural variables by CAS-agar plate assay. Asian Journal of Pharmacy and Pharmacology, 4, 66–69.

    Article  CAS  Google Scholar 

  • Su, A. Y., Niu, S. Q., Liu, Y. Z., He, A. L., Zhao, Q., Pare, P., et al. (2017). Synergistic effects of Bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass. International Journal of Molecular Sciences, 18, 2651. https://doi.org/10.3390/ijms1812265.

    Article  PubMed Central  Google Scholar 

  • Suhanna, H. A., Norhanis, Y., & Hartinee, A. (2013). Application of Trichoderma spp. to control stem end rot disease of mango var. Journal of Tropical Agriculture and Food Science, 41, 159–168.

    Google Scholar 

  • Tahir, A. S., Qin, G., Huijun, W. U., Waseem, R., Safdar, A., Huang, Z., et al. (2017). Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biology, 17, 133. https://doi.org/10.1186/s12870-017-1083-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo-Estrada, R., Paszczynski, S. A., & Crawford, D. (1998). Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. Journal of Industrial Microbiology and Biotechnology, 21, 81–90.

    Article  CAS  Google Scholar 

  • Trovero, M. F., Scavone, P., Platero, R., de Souza, E. M., Fabiano, E., & Rosconi, F. (2018). Herbaspirillum seropedicae differentially expressed genes in response to iron availability. Frontiers in Microbiology, 9, 1430. https://doi.org/10.3389/fmicb.2018.01430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turan, M., Medine, G., Cakmakci, R., Taskin, O., & Fikrettin, S. (2018). The effect of PGPR strain on wheat yield and quality parameters. In: World Congress of Soil Science, pp. 140–143.

    Google Scholar 

  • Ueno, D., Rombola, A. D., Iwashita, T., Nomoto, K., & Ma, J. F. (2007). Identification of two novel phytosiderophores secreted by perennial grasses. New Phytologist, 174, 304–310.

    Article  CAS  PubMed  Google Scholar 

  • Uren, N. C. (2007). Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (2nd ed., pp. 1–21). Boca Raton: CRC Press.

    Google Scholar 

  • Uzair, B., Kausar, R., & Bano, S. A. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed Research International, 2018, 6147380. https://doi.org/10.1080/03235408.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacheron, J., Desbrosses, G., Renoud, S., Padilla, R., Walker, V., Muller, D., & Prigent-Combaret, C. (2018). Differential contribution of plant-beneficial functions from Pseudomonas kilonensis F113 to root system architecture alterations in Arabidopsis thaliana and Zea mays. MPMI, 31, 212–223.

    Article  CAS  PubMed  Google Scholar 

  • Vandana, U. K., Chopra, A., Choudhury, A., Adapa, D., & Mazumder, P. B. (2018). Genetic diversity and antagonistic activity of plant growth promoting bacteria, isolated from tea-rhizosphere: A culture dependent study. Biomedical Research, 29, 853–864.

    Article  CAS  Google Scholar 

  • Vellasamy, S., Nithya, K., Hariharan, H., Jayaprakashvel, M., & Balasubramanian, N. (2015). Biocontrol Mechanisms of siderophores against bacterial plant pathogens. pp. 167–189. In V. R. Kannan & K. K. Bastas (Eds.), Sustainable approaches to controlling plant pathogenic bacteria (pp. 167–186). Boca Raton: CRC Press. https://doi.org/10.1201/b18892-9.

    Chapter  Google Scholar 

  • Venkataravanappa, V., Kodandaram, M., Lakshminarayana, N., Reddy, C., Shankarappa, K. S., & Reddy, M. K. (2017). Comparative transmission of Bhendi yellow vein mosaic virus by two cryptic species of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Biotechnology, 7, 331. https://doi.org/10.1007/s13205-017-0970-8.

    Article  CAS  Google Scholar 

  • Vinale, F., Nigro, M., Sivasithamparam, K., & Flematti, G. (2013). Harzianic acid: A novel siderophore from Trichoderma harzianum. FEMS Microbiology Letters, 347, 123–129.

    CAS  PubMed  Google Scholar 

  • Viterbo, A., Ofir, R., Leonid, C., & Ilan, C. (2002). Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie van Leeuwenhoek, 81, 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Vitorino, L. C., Bessa, L. A., Carvalho, L. G., & Silva, F. G. (2016). Growth promotion mediated by endophytic fungi in cloned seedlings of Eucalyptus grandis × Eucalyptus urophylla hybrids. African Journal of Biotechnology, 15, 2729–2738.

    Article  Google Scholar 

  • Vurukonda, S. S. K. P., Giovanardi, D., & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences, 19, E952. https://doi.org/10.3390/ijms19040952.

    Article  CAS  PubMed  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner, S., Latz, E., Agaras, B., Valverde, C., & Jousset, A. (2017). Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant and Soil, 410, 509–515.

    Article  CAS  Google Scholar 

  • Weizhen, Q., & Lei, Z. (2013). Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 53, 355–364. https://doi.org/10.1002/jobm.201200031.

    Article  CAS  Google Scholar 

  • Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C., & Bakker, P. A. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology, 102, 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, L., Gong, S., Yang, L., Hao, J., Xue, M. F., Zeng, F. S., et al. (2016). Biocontrol potential of endophytic fungi in medicinal plants from Wuhan Botanical Garden in China. Biological Control, 94, 47–55.

    Article  Google Scholar 

  • Yamagiwa, Y., Inagaki, Y., Ichinose, Y., Toyoda, K., & Hyakumachi, M. (2011). Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology, 77, 336–341.

    Article  CAS  Google Scholar 

  • Yolcu, H., Gunes, A., Gullap, M. K., & Cakmakci, R. (2012). Effects of plant growth-promoting rhizobacteria on some morphologic characteristics, yield and quality contents of hungarian vetch. Turkish Journal of Field Crops, 17, 208–214.

    Google Scholar 

  • Zak, D. R., Pregitzer, K. S., King, J. S., & Holmes, W. E. (2000). Elevated atmospheric CO2 fine roots and the response of soil microorganism: A review and hypothesis. New Phytologist, 147, 201–222.

    Article  CAS  Google Scholar 

  • Zhang, X. H., Wang, Y. S., & Lin, A. J. (2011). Effects of Arbuscular mycorrhizal colonization on the growth of upland rice (Oryzal Sativa L.) in soil experimentally contaminated with Cu and Pb. Journal of Clinical Toxicology, S3, 003. https://doi.org/10.4172/2161-0495.S3-00.

    Article  Google Scholar 

  • Zhang, Q., Gao, X., Ren, Y., Ding, X., Qiu, J., Li, N., et al. (2018). Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. International Journal of Molecular Sciences, 19, E241. https://doi.org/10.3390/ijms19010241.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L. S., Tang, K., & Guo, S. X. (2018). The plant growth-promoting fungus (PGPF) Alternaria sp. A13 markedly enhances Salvia miltiorrhiza root growth and active ingredient accumulation under greenhouse and field conditions. International Journal of Molecular Sciences, 19, E270. https://doi.org/10.3390/ijms19010270.

    Article  CAS  PubMed  Google Scholar 

  • Zulueta-Rodriguez, R., Cordoba-Matson, M. V., Hernandez-Montiel, L. G., Murillo-Amador, B., Rueda-Puente, E., & Lara, L. (2014). Effect of Pseudomonas putida on growth and anthocyanin pigment in two poinsettia (Euphorbia pulcherrima) cultivars. The Scientific World Journal, 1–6. https://doi.org/10.1155/2014/810192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazli, F., Najm-ul-Seher, Khan, M.Y., Jamil, M., Nadeem, S.M., Ahmad, M. (2020). Soil Microbes and Plant Health. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_6

Download citation

Publish with us

Policies and ethics