Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

Abstract

Biological control is a viable alternatives to the use of synthetic chemicals for plant pathogens management,., based on application of microbial antagonists as biological control agents (BCA). Plant health is significantly affected in many ways by a wide variety of pathogens. Cross protection, predation, hyperparasitism, induced resistance, antibiosis and competition are different mechanisms used by BCA. Knowledge is required for successful application of biocontrol in intensive management approaches. BCA can be applied at the site of infection directly or in each crop year, at sites in which they will multiply and spread to other field parts. To keep pathogen populations below economic threshold levels, occasional or one time applications can be adopted. However, due to different environmental conditions, biological control has not always produced encouraging results. To improve the BCA performance in the field, work on formulations is needed. For marketing, strains with better adaptability and field survival should be prospected. Most of biological control work has been centered on management of soil borne or seed borne pathogens. Most of the products containing BCA are applied as seed treatments for protecting major crops such as wheat, rice, sugar beet, corn and cotton. BCA are also used in foliar sprays to manage downy and powdery mildew, leaf spot and blight. Antagonistic microorganisms have also been used against few post-harvest pathogens. In spite of all significant improvements, this area still needs due consideration for developing more reliable and stable formulations, especially when for field applications. In this view, more research is required on innovative formulations by exploring novel microorganisms, using nano- and biotechnologies for their improvement, studying the impact of environmental conditions and the mass production of BCA. With a growing of biocontrol demand by growers, the future outlook of biocontrol is bright. By improving biocontrol research it is possible to completely replace chemical pesticides by BCA, improving yields, protection technologies and the environment, leading to a more sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aatif, H. M., Javed, N., Khan, S. A., Ahmed, S., & Raheel. (2015). Virulence of entomopathogenic nematodes against Meloidogyne incognita for invasion, development and reproduction at different application times in brinjal roots. International Journal of Agriculture and Biology, 17, 995–1000.

    Article  Google Scholar 

  • Abdelbasset, E. H., Adam, L. R., Hadrami, I. E., & Daayf. (2010). Chitosan in plant protection. Marine Drugs, 8, 968–987.

    Article  CAS  Google Scholar 

  • Agrios, N. A. (1988). Plant pathology (3rd ed., pp. 220–222). Cambridge, MA: Academic Press.

    Google Scholar 

  • Anderson, A. J., Habibzadegah-Tari, P., & Tepper, C. S. (1988). Genetic studies on the role of an agglutinin-in root colonization by Pseudomonas putida. Applied and Environmental Microbiology, 54, 375–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, L. M., Stockwell, V. O., & Loper, J. E. (2004). An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology, 94, 1228–1234.

    Article  CAS  PubMed  Google Scholar 

  • Audenaert, K., Pattery, T., Cornelis, P., & Hofte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin and pyocyanin. MPMI, 15, 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  • Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology, 25, 67–85.

    Article  Google Scholar 

  • Bankhead, S. B., Landa, B. B., Lutton, E., Weller, D. M., & Gardener, B. B. (2004). Minimal changes in rhizosphere population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiology Ecology, 49, 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2002). Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phylosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61, 289–298.

    Article  CAS  Google Scholar 

  • Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2004). Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control, 30, 342–350.

    Article  Google Scholar 

  • Benhamou, N. (2004). Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit-against Penicillium digitatum, the causal agent of green mold: A comparison with-the effect of chitosan. Phytopathology, 94, 693–705.

    Article  PubMed  Google Scholar 

  • Benhamou, N., & Chet, I. (1997). Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Applied and Environmental Microbiology, 63, 2095–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Biermann, B., & Linderman, R. G. (1983). Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. The New Phytologist, 95, 97–105.

    Article  Google Scholar 

  • Bilgrami, A. L. (2008). Biological control potentials of predatory nematodes. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crops nematodes (pp. 3–28). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bos, L. (1992). New plant virus problems in developing countries: A corollary of agricultural modernisation. Advances in Virus Research, 38, 349–407.

    Article  Google Scholar 

  • Buddenhagen, I. W. (1977). Resistance the vulnerability of tropical crops in relation to their evolution and breeding. Annals of the New York Academy of Sciences, 287, 309–326.

    Article  Google Scholar 

  • Bull, C. T., Shetty, K. G., & Subbarao, K. V. (2002). Interactions between Myxobacteria, plant pathogenic fungi and biocontrol agents. Plant Disease, 86, 889–896.

    Article  CAS  PubMed  Google Scholar 

  • Cayrol, J. C. (1983). Biological control of Meloidogyne by Anthrobotrys irregularis. Revue de Nematologie, 6, 265–273.

    Google Scholar 

  • Chen, Z. X., & Dickson, D. W. (1998). Review of Pasteuria penetrans: Biology, ecology and biological control potential. Journal of Nematology, 30, 313–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  CAS  PubMed  Google Scholar 

  • Ciancio, A., & Quénéhervé, P. (2000). Population dynamics of Meloidogyne incognita and infestation levels by Pasteuria penetrans in a naturally infested field in Martinique. Nematropica, 30, 77–86.

    Google Scholar 

  • Cook, R. J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53–80.

    Article  CAS  PubMed  Google Scholar 

  • De Capdeville, G., Wilson, C. L., Aist, B. S. V., & J.R. (2002). Alternative disease control agents induce resistance to blue mold in harvested Red Delicious apple fruit. Phytopathology, 92, 900–908.

    Article  PubMed  Google Scholar 

  • De Meyer, G., & Hofte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinera on bean. Phytopathology, 87, 588–593.

    Article  PubMed  Google Scholar 

  • Devi, G., & George, J. (2018). Predatory nematodes as bio-control agents against plant parasitic nematodes: A review. Agricultural Reviews, 39, 55–61.

    Google Scholar 

  • Duchesne, L. C. (1994). Role of ectomycorrhizal fungi in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 27–45). Paul: APS Press.

    Google Scholar 

  • Elad, Y., & Baker, R. (1985). Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology, 75, 1047–1052.

    Article  CAS  Google Scholar 

  • El-Dougdoug, K. A., Ghaly, M. F., & Taha, M. A. (2012). Biological control of cucumber mosaic virus by certain local Streptomyces isolates: inhibitory effects of selected five Egyptian isolates. International Journal of Virology, 8, 151–164. https://doi.org/10.3923/ijv.2012.151.164.

    Article  Google Scholar 

  • El-Ghaouth, A., Smilanick, J. L., Brown, G. E., Ippolito, A., Wisniewski, M., & Wilson, C. L. (2000). Application of Candida saitoana and glycolchitosan for the control of post harvest diseases of apple and citrus fruit under semi-commercial conditions. Plant disease, 84, 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Fitter, A. H., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159, 123–132.

    Article  Google Scholar 

  • Gafni, Y. (2003). Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Molecular Plant Pathology, 4(1), 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garrido, J. M., & Ocampo, J. A. (1989). Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biology and Biochemistry, 21, 165–167.

    Article  Google Scholar 

  • Giné, A., Carrasquilla, M., Martínez-Alonso, M., Gaju, N., & Sorribas, F. J. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science, 7, 164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91, 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Haas, D., & Keel, C. (2003). Regulation of antibiotic production in rootcolonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117–153.

    Article  CAS  PubMed  Google Scholar 

  • Harish, S. (2005). Molecular biology and diagnosis of Banana bunchy top virus and its management through induced systemic resistance. Ph.D. Thesis. Coimbatore: Tamil Nadu agricultural University.

    Google Scholar 

  • Harrison, B. D., Swanson, M. M., McGrath, P. F., & Fargette, D. (1991). Patterns of antigenic variation in whitefly-transmitted geminiviruses. Report of the Scottish Crop Research Institute for 1990, pp. 88–90.

    Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Heydari, A. (2007). Biological control of turfgrass fungal diseases. In M. Pessaraki (Ed.), Turfgress management and physiology. Boca Raton: CRC press.

    Google Scholar 

  • Heydari, A., & Misaghi, I. J. (1998). Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils. Plant and Soil, 202, 109–116.

    Article  CAS  Google Scholar 

  • Heydari, A., & Misaghi, I. J. (1999). Herbicide-mediated changes in the populations and activity of root associated microorganisms: A potential cause of plant stress. In M. Pessarakli (Ed.), Handbook of plant and crop stress (2nd ed.). New York: Marcel Dekker Press.

    Google Scholar 

  • Heydari, A., & Misaghi, I. J. (2003). The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani-induced cotton seedling damping-off. Plant and Soil, 257, 391–396.

    Article  CAS  Google Scholar 

  • Heydari, A., Misaghi, I. J., & McCloskey, W. B. (1997). Effects of three soil-applied herbicides on populations of plant disease suppressing bacteria in the cotton rhizosphere. Plant and Soil, 195, 75–81.

    Article  CAS  Google Scholar 

  • Heydari, A., Fattahi, H., Zamanizadeh, H. R., Zadeh, N. H., & Naraghi, L. (2004). Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in greenhouse. Applied Entomology and Phytopathology, 72, 51–68.

    Google Scholar 

  • Hoitink, H. A. J., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Homma, Y., Sato, Z., Hirayama, F., Konno, K., Shirahama, H., & Suzui, T. (1989). Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biology and Biochemistry, 21(5), 723–728.

    Article  CAS  Google Scholar 

  • Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology, 70, 712–715.

    Article  CAS  Google Scholar 

  • Howell, C. R., Beier, R. C., & Stipanovic, R. D. (1988). Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathology, 78, 1075–1078.

    Article  CAS  Google Scholar 

  • Hu, K., Li, J., & Webster, J. M. (1999). Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathohenic nematodes. Nematology, 1, 457–469. https://doi.org/10.1094/PHI-A-2006-1117-02.

    Article  CAS  Google Scholar 

  • Islam, M. T., Hashidoko, Y., Deora, A., Ito, T., & Tahara, S. (2005). Suppression of damping-off-disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is-linked to plant colonization and antibiosis against soilborne peronosporomycetes. Applied and Environmental Microbiology, 71, 3786–3796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen, B. J., Zidack, N. K., & Larson, B. J. (2004). The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology, 94, 1272–1275.

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz, W. J., & Peterson, D. L. (2004). Susceptibility of the stem pull area of mechanically harvested apples to blue mold decay and its control with a biocontrol agent. Plant and Disease, 88, 662–664.

    Article  CAS  Google Scholar 

  • Jeger, M. J., Jeffries, P., Elad, Y., & Xu, X. (2009). A generic theoretical model for biological control of foliar plant diseases. Journal of Theoretical Biology, 256, 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. A. C. (2006). Control of plant virus diseases. Advances in Virus Research, 67, 205–244.

    Article  PubMed  Google Scholar 

  • Kandan, A., Ramiah, M., Vasanthi, V., Radjacommare, R., Nandakumar, R., Ramanathan, A., & Samiyappan, R. (2005). Use of Pseudomonas fluorescens-based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Science and Technology, 15, 553–569.

    Article  Google Scholar 

  • Kandan, A., Ramiah, M., Vasanthi, V. J., Radjacommare, R., Nandakumar, R., Ramanathan, A., & Samiyappan, R. (2007). Use of -based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Science and Technology, 15(6), 553–569.

    Article  Google Scholar 

  • Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., & Samiyappan, R. (2008). Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. European Journal of Plant Pathology, 120(4), 353–362.

    Article  CAS  Google Scholar 

  • Katska, V. (1994). Interrelationship between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biologia Plantarum, 36, 99–104.

    Article  Google Scholar 

  • Keel, C., Voisard, C., Berling, C. H., Kahir, G., & Defago, G. (1989). Iron sufficiency is a prerequisit for suppression of tobacco black root rot by Pseudomonas fluorescnes strain CHA0 under gnotobiotic contiditions. Phytopathology, 79, 584–589.

    Article  Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.

    Article  CAS  PubMed  Google Scholar 

  • Kessel, G. J. T., Kohl, J., Powell, J. A., Rabbinge, R., & van der Werf, W. (2005). Modeling spatial characteristics in the biological control of fungi at the leaf scale: Competitive substrate colonization by Botrytis cinerea and the saprophytic antagonist Ulocladium atrum. Phytopathology, 95, 439–448.

    Article  CAS  PubMed  Google Scholar 

  • Kirankumar, R., Jagadeesh, K. S., Krishnaraj, P. U., & Patil, M. S. (2008). Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Sciences, 21, 309–311.

    Google Scholar 

  • Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Pseudomonas siderophores: A mechanism explaining disease suppression in soils. Current Microbiology, 4, 317–320.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle, N. (2015). Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on Snapdragon. Journal of Nematology, 47, 207–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lafontaine, P. J., & Benhamou, N. (1996). Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Science and Technology, 6, 111–124.

    Article  Google Scholar 

  • Leclère, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leeman, M., van Pelt, J. A., den Ouden, F. M., Heinsbroek, M., Schippers, B. P. A. H. M., & B. (1995). Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using novel bioassay. European Journal of Plant Pathology, 101, 655–664.

    Article  Google Scholar 

  • Leyns, F., Borgoni, G., Arnaut, G., & De Waele, D. (1995). Nematicidal activity of Bacillus thuringiensis isolates. Fundamental & Applied Nematology, 18, 211–218.

    Google Scholar 

  • Linderman, R. G. (1994). Role of VAM fungi in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health. St. Paul: APS Press. ISBN-10: 0890541582.

    Google Scholar 

  • Lo, C. T., Nelson, E. B., & Harman, G. E. (1997). Biological control of Pythium, Rhizoctonia and Sclerotinia infected diseases of turfgrass with Trichoderma harzianum. Phytopathology, 84, 1372–1379.

    Google Scholar 

  • Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions of plant surfaces. MPMI, 4, 5–13.

    Article  CAS  Google Scholar 

  • Maurhofer, M., Hase, C., Matraux, J. P., & Defago, G. (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strains CHAO: Influence of the gacA gene and pyoverdine production. Phytopathology, 84, 139–146.

    Article  CAS  Google Scholar 

  • McSpadden-Gardener, B. B., & Weller, D. M. (2001). Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Applied and Environmental Microbiology, 67, 4414–4425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meziane, H., van der Sluis, I., van Loon, L. C., Bakker, H. M., & P.A.H.M. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 6, 177–185.

    Article  PubMed  Google Scholar 

  • Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42, 311–338.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U., & Prem, S. (2014). Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Australian Journal of Crop Science (AJCS), 8, 347–355.

    CAS  Google Scholar 

  • Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 90, 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Muniyappa, V., & Veeresh, G. K. (1984). Plant virus diseases transmitted by whiteflies in Karnataka. Proceedings of Indian Academy of Sciences, 93, 397–406.

    Article  Google Scholar 

  • Murphy, J. F., Zehnder, G. W., Schuster, D. J., Sikora, E. J., Polston, J. E., & Kloepper, J. W. (2000). Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant and Disease, 84, 779–784.

    Article  Google Scholar 

  • Ordentlich, A., Elad, Y., & Chet, I. (1988). The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology, 78, 84–87.

    CAS  Google Scholar 

  • Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02.

  • Phillips, A. D., Fox, T. C., King, M. D., Bhuvaneswari, T. V., & Teuber, L. R. (2004). Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 136, 2887–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Press, C. M., Loper, J. E., & Kloepper, J. W. (2001). Role of iron in rhizobacteria mediated induced systemic resistance of cucumber. Phytopathology, 91, 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Ramette, A., Moenne-Loccoz, Y., & Defago, G. (2003). Prevalence of fluorescent-pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco root rot. FEMS Microbial Ecology, 44, 35–43.

    Article  CAS  Google Scholar 

  • Ramzan, M., Tabassum, B., Nasir, I. A., Khan, A., Tariq, M., Awan, M. F., et al. (2016). Identification and application of biocontrol agents against cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions. Biotechnology & Biotechnological Equipment, 30, 469–478.

    Article  CAS  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia, A. K., & Muniyappa, V. (1989). Epidemiology and control of tomato leaf curl virus in Southern India. Tropical Agriculture (Trinidad), 66, 350–354.

    Google Scholar 

  • Schouten, A., van den Berg, G., Edel-Hermann, V., Steinberg, C., Gautheron, N., Alabouvette, C., et al. (2004). Defense responses of Fusarium oxysporum to 2,4-DAPG, a broad spectrum antibiotic produced by Pseudomonas fluorescens. MPMI, 17, 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Shahraki, M., Heydari, A., & Hassanzadeh, N. (2009). Investigation of antibiotic, siderophore and volatile metabolites production by Bacillus and Pseudomonas bacteria. Iranian Journal of Biology, 22, 71–85.

    Google Scholar 

  • Shah-Smith, D. A., & Burns, R. G. (1997). Shelf-life of a biocontrol Pseudomonas putida applied to the sugar beet seeds using commercial coatings. Biocontrol Science and Technology, 7, 65–74.

    Article  Google Scholar 

  • Shanahan, P., O’Sullivan, D. J., Simpson, P., Glennon, J. D., & O’Gara, F. (1992). Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, R. D. (1994). Bacillus thuringiensis a biocontrol agent of Meloidogyne incognita on barley. Nematologia Brasileira, 18, 79–84.

    Google Scholar 

  • Silva, H. S. A., Romeiro, R. D. S., Macagnan, D., Halfeld-Vieira, B. D. A., Pereira, M. C. B., & Mounteer, A. (2004). Rhizobacterial induction of systemic resistance in tomato plants: Non-specific protection and increase in enzyme activities. Biological Control, 29, 288–295.

    Article  CAS  Google Scholar 

  • Srinivasan, K., Surendiran, G., & Maathivanan, N. (2005). Pathological and molecular biological investigations on sunflower necrosis virus (SNV) and ISR mediated biological control of SNV by PGPR strains. Asian Conference on Emerging Trends in Plant- Microbe Interaction, 8–10 December Chennai India.

    Google Scholar 

  • Stirling, G. R. (1985). Host specificity of Pasteuria penetrans within the genus Meloidogyne. Nematologica, 31, 203–209.

    Article  Google Scholar 

  • Stirling, G. R. (2011). Biological control of plant-parasitic nematodes: An ecological perspective, a review of progress and opportunities for further research. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Progress in biological control (Vol. 11, pp. 1–38). Dordrecht: Springer.

    Google Scholar 

  • Tari, P. H., & Anderson, A. J. (1988). Fusarium wilt suppression and agglutinability of Pseudomonas putida. Applied and Environmental Microbiology, 54, 2037–2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow, L. S., & Weller, D. M. (1988). Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. Tritici. Journal of Bacteriology, 170, 3499–3508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow, L. S., Weller, D. M., Bonsall, R., & Pierson, L. S. (1990). Production of de antibiotic phenazine 1-carboxylic acid by fluorescent pseudomonad species in the rhizosphere of wheat. Applied and Environmental Microbiology, 56, 908–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow, L. S., Bonsall, R. F., & Weller, D. M. (2002). Antibiotic production by soil and rhizosphere microbes in situ (2nd ed., pp. 638–647). Washington DC: ASM Press.

    Google Scholar 

  • Thresh, J. M. (1980). The origins and epidemiology of some important plant virus diseases. Applied Biology, 5, 1–65.

    Google Scholar 

  • Thresh, J. M. (Ed.). (1981). Pests pathogens and vegetation. London: Pitman.

    Google Scholar 

  • Thresh, J. M. (1982). Cropping practices and virus spread. Annual Review of Phytopathology, 20, 193–218.

    Article  Google Scholar 

  • Timper, P. (2014). Conserving and enhancing biological control of nematodes. Journal of Nematology, 46, 75–89.

    PubMed  PubMed Central  Google Scholar 

  • Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.

    Article  Google Scholar 

  • Van Dijk, K., & Nelson, E. B. (2000). Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Applied and Environmental Microbiology, 66, 5340–5347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon, L. C., Pieterse, B. P. A. H. M., & C.M.J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Van Peer, R., & Schippers, B. (1992). Lipopolysaccharides of plant-growth promoting Pseudomonas spp. strain WCS 417r induce resistance in carnation to Fusarium wilt. Netherlands Journal of Plant Pathology, 98, 129–139.

    Article  Google Scholar 

  • Van Wees, S. C., Pieterse, C. M., Trijssenaar, A., van’t Westende, Y. A., Hartog, F., & van Loon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. MPMI, 10, 716–724.

    Article  PubMed  Google Scholar 

  • Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., & Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 100, 2760–2765. https://doi.org/10.1073/pnas.0538072100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.

    Article  CAS  PubMed  Google Scholar 

  • Wilhite, S. E., Lumsden, R. D., & Strancy, D. C. (2001). Peptide synthetase gene in Trichoderma virens. Applied and Environmental Microbiology, 67, 5055–5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Loffredo, A., Borneman, J., & Becker, J. O. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.

    PubMed  PubMed Central  Google Scholar 

  • Zuckerman, B. M., Dicklow, M. B., & Acosta, N. (1993). A strain of Bacillus thuringiensis for the control of plant parasitic nematodes. Biocontrol Science and Technology, 3, 41–46.

    Article  Google Scholar 

  • Zhang, S., Moyne, A., Reddy, M. S., & Kloepper, J. W. (2002). The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control, 25(3), 288–296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaiser Shakeel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iftikhar, Y., Sajid, A., Shakeel, Q., Ahmad, Z., Ul Haq, Z. (2020). Biological Antagonism: A Safe and Sustainable Way to Manage Plant Diseases. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_5

Download citation

Publish with us

Policies and ethics