Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

Abstract

Disease resistance is of great concern for plant breeding programs. Diseases are a major yield-limiting factor, caused by many air born, soil born or waterborne microorganisms, which in fact are a risk for food security. Improving efficacy of management practices can increase yields, but only to a limited extent, whereas plant breeding as a technology increases yields to large extents. Advancements in new science and technology allow the development of tools whereas old ones are also refined. Most cost-effective and environment-friendly methods applied in disease resistance programs include adoption of conventional breeding approaches. There are two type of resistance, namely vertical (controlled by major genes) and horizontal (controlled by minor genes). Breeding programs change with respect to crops, diseases and pathogens. In spite of this, main objective is the accumulation of favorable gene(s) into cultivars, to deal with a given scenario. Selection, introduction, hybridization and screening are the main steps of a successful breeding program. Landraces, related species, mutations and wild relatives are the sources of resistance. They can be utilized for resistance introduction in commercial cultivars. Selection of resistant cultivar is the most robust and cheap method, allowing thereby introduction of resistant cultivar into a new region. Moreover, resistant cultivars are used to cross with local cultivars for introduction of resistance genes into them. The rapid evolution of phytopathogens and crops susceptibility pose severe issues, therefore disease resistance represents a complex aspect of any program. Being also affected by the environment it still represents a big challenge for breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, R. A., Banerjee, S. K., Singh, M., & Katiyar, K. N. (1976). Resistance to insects in cotton.II. To pink bollworm, Pectinophora gossypiella (Saunders). Coton et Fibres Tropicales, 31, 217–221.

    Google Scholar 

  • Allard, R. W. (1960). Principles of plant breeding. New York: Wiley/Toppan. 485 pp.

    Google Scholar 

  • Aminu, K. C. (1940). Interspecific hybridization between Asiatic and new world cottons. Indian Journal of Agricultural Sciences, 10, 404–412.

    Google Scholar 

  • Anjum, Z. I., Hayat, K., Chalkin, S., Azhar, T. M., Shehzad, U., Ashraf, F., et al. (1986). Occurrence of an antifungal principle in the root extracts of a Bayoud-resistant date palm cultivar. Netherlands Journal of Plant Pathology, 92, 43–47.

    Article  Google Scholar 

  • Assef, G. M., Assari, K., & Vincent, E. J. (1986). Occurrence of an antifungal principle in the root extracts of a Bayoud-resistant date palm cultivar. Netherlands Journal of Plant Pathology, 92, 43–47.

    Article  Google Scholar 

  • Barnett, H., & Binder, F. (1973). The fungal host-parasite relationship. Annual Review of Phytopathology, 11, 273–292.

    Article  Google Scholar 

  • Bayles, R. A., Channell, M. H., & Stigwood, P. L. (1989). New races of Puccinia striiformis in the United Kingdom in 1988. Cereal Rusts Bulletin, 17, 20–23.

    Google Scholar 

  • Bennet, C. P. A., Hunt, P., & Asman, A. (1985). Association of a xylem-limited bacterium with Sumatra disease of cloves in Indonesia. Plant Pathology, 34, 487–494.

    Article  Google Scholar 

  • Boswell, K. F., Dallwitz, M. J., Gibbs, A. J., & Watson, L. (1986). The VIDE (virus identification data exchange) project: A data bank for plant viruses. Review of Plant Pathology, 65, 221–231.

    Google Scholar 

  • Bourke, P. M. A. (1964). Emergence of potato blight, 1843-1846. Nature, 203, 805–808.

    Article  Google Scholar 

  • Brim, C. A., & Stuber, C. W. (1973). Application of genetic male sterility to recurrent selection schemes in soybean. Crop Science, 13, 528–530.

    Article  Google Scholar 

  • Brinkerhoff, L. A. (1970). Variation in Xanthomonas malvacearum and its relation to control. Annual Review of Phytopathology, 8, 85–110.

    Article  Google Scholar 

  • Brown, A. H. D., Frankel, O. H., Marshall, D. R., & Williams, J. T. (1989). The use of plant genetic resources. Cambridge: Cambridge University Press.

    Google Scholar 

  • Burdon, J. J. (1987). Diseases and plant population biology. Cambridge: Cambridge University Press Archive, 208 pp.

    Google Scholar 

  • Chilosi, G., & Corazza, L. (1990). Occurrence and epidemics of yellow rust on wheat in Italy. Cereal Rusts and Powdery Mildews Bullettin, 18, 1–19.

    Google Scholar 

  • Clifford, B. C., & Lester, E. (1988). Control of plant diseases, costs and benefits. Oxford: Blackwell Science Publishing, 263 pp.

    Google Scholar 

  • Davis, M. J. (1986). Taxonomy of plant-pathogenic coryneform bacteria. Annual Review of Phytopathology, 24, 115–140.

    Article  Google Scholar 

  • De Boer, S., & McCann, M. (1989). Determination of population densities of Corynebacteriumsepedonicum in potato stems during the growing season. Phytopathology, 79, 946–951.

    Article  Google Scholar 

  • Diaz-Lago, J. E., Stuthman, D. D., & Abadie, T. E. (2002). Recurrent selection for partial resistance to crown rust in oat. Crop Science, 42, 1475–1482.

    Article  Google Scholar 

  • Doggett, H., & Eberhart, S. A. (1968). Recurrent selection in sorghum. Crop Science, 8, 119–121.

    Article  Google Scholar 

  • Douet, M. (1984). Effets structurant des consortiums maritimes sur le marche des lignes régulières: l’exemple des consortiums à participation française. Thèse de Doctorat, Université Paris 1 Panthéon-Sorbonne, 635 pp.

    Google Scholar 

  • Draz, I. S., Abou-Elseoud, M. S., Kamara, A. E. M., Alaa-Eldein, O. A. E., & El-Bebany, A. F. (2015). Screening of wheat genotypes for leaf rust resistance along with grain yield. Annals of Agricultural Science, 60, 29–39.

    Article  Google Scholar 

  • Eberhart, S. A. (1990). A comprehensive breeding system for developing improved maize hybrids. In B. Gebrekidan (Ed.), Maize improvement, production and protection in Eastern and Southern Africa. Nairobi: AMREF Printing Department.

    Google Scholar 

  • Ellis, M. H., Stiller, W. N., Phongkham, T., Tate, W. A., Gillespie, V. J., Gapare, W. J., et al. (2016). Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L. Euphytica, 210, 135–142.

    Article  CAS  Google Scholar 

  • Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen-host-environment interplay and disease emergence. Emerging Microbes & Infections, 2, e5. https://doi.org/10.1038/emi.2013.5.

    Article  CAS  Google Scholar 

  • Fauquet, C., & Fargette, D. (1990). African cassava mosaic virus: Etiology, epidemiology and control. Plant Disease, 74, 404–411.

    Article  Google Scholar 

  • Fehr, W. R. (Ed.). (1987). Principles of cultivar development. New York: Macmillan.

    Google Scholar 

  • Garrett, K. A. (1999). Factors influencing the effects of host diversity on plant disease epidemics for wheat stripe rust and potato late blight.

    Google Scholar 

  • Gilmore, E. C. (1964). Suggested method of using reciprocal recurrent selection in some naturally self pollinated species. Crop Science, 4, 323–325.

    Article  Google Scholar 

  • Grisham, M. P. (1991). Effect of ratoon stunting disease on yield of sugarcane grown in multiple three-year plantings. Phytopathology, 81, 337–340.

    Article  Google Scholar 

  • Hanold, D., & Randles, J. W. (1991). Coconut cadang-cadang disease and its viroid agent. Plant Disease, 75, 330–335.

    Article  CAS  Google Scholar 

  • Hawkes, J. G. (1991). Genetic conservation of world crop plants. Biological Journal of the Linnean Society, 43, 1–80.

    Article  Google Scholar 

  • Hogenboom, N. G. (1993). Economic importance of breeding for disease resistance. In T. Jacobs & J. E. Parlevliet (Eds.), Durability of disease resistance (pp. 5–9). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hurni, S., Scheuermann, D., Krattinger, S. G., Kessel, B., Wicker, T., Herren, G., et al. (2015). The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 112, 8780–8785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham, R. E., & Detling, J. K. (1990). Effects of root-feeding nematodes on aboveground net primary production in a North American grassland. Plant and Soil, 121, 279–281.

    Article  Google Scholar 

  • Innes, N. L. (1983). Bacterial blight of cotton. Biological Reviews, 58, 157–176.

    Article  Google Scholar 

  • Isaac, S. (1991). Fungal-plant interactions. Dordrecht: Springer.

    Google Scholar 

  • Janse, J. (1988). A Streptomyces species identified as the cause of carrot scab. Netherlands Journal of Plant Pathology, 94, 303–306.

    Article  Google Scholar 

  • Jenkins, G. (1984). Winter and spring wheat. Annual report of the Plant Breeding Institute, 1983, pp. 23–28.

    Google Scholar 

  • Jensen, N. F. (1970). A diallel selective mating system of cereal breeding. Crop Science, 10, 629–635.

    Article  Google Scholar 

  • Johnson, R. (1978). Practical breeding for durable resistance to rust disease in self-pollinating cereals. Euphytica, 27, 529–540.

    Article  Google Scholar 

  • Jonsson, B. G., Kruys, N., & Ranius, T. (2005). Ecology of species living on dead wood. Lessons for dead wood management. Silva Fennica, 39, 289–309.

    Article  Google Scholar 

  • Kathiria, P., Sidler, C., Woycicki, R., Yao, Y., & Kovalchuk, I. (2013). Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter. Plant Signaling Behavior, 8, e24760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keystone Center. (1991). Global initiative for the security and sustainable use of plant genetic resources. Keystone: Keystone International.

    Google Scholar 

  • Knight, R. L. (1957). Blackarm disease of cotton and its control. In Plant protection conference (Vol. 1956, pp. 53–59). London: Butterworths Scientific Publications.

    Google Scholar 

  • Knott, D. R., & Dvorak, J. (1976). Alien germplasm as a source of resistance to disease. Annual Review of Phytopathology, 14, 211–235.

    Article  Google Scholar 

  • Krattinger, S. G., Sucher, J., Selter, L. L., Chauhan, H., Zhou, B., Tang, M., et al. (2016). The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnology Journal, 14, 1261–1268.

    Article  CAS  PubMed  Google Scholar 

  • Large, E. C. (1940). The advance of the fungi. London: Jonathan Cape.

    Google Scholar 

  • Lillemo, M., Joshi, A. K., Prasad, R., Chand, R., & Singh, R. P. (2013). QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theoretical and Applied Genetics, 126, 711–719.

    Article  CAS  PubMed  Google Scholar 

  • Lucas, G. B., Lee Campbell, C., & Lucas, L. T. (1992). Causes of plant diseases. Introduction to plant diseases: Identification and management (pp. 9–14). Boston: Springer.

    Book  Google Scholar 

  • Lupton, F. G. H. (1983). Winter wheat. Annual report of the Plant Breeding Institute 1982, pp. 23–26.

    Google Scholar 

  • Marlatt, R., & Pohronezny, K. (1983). Field survey of Tahiti lime, Citrus latifolia, for algal disease, melanose, and greasy spot in southern Florida. Plant Disease, 67, 946–949.

    Article  Google Scholar 

  • Matzinger, D. F., & Wernsman, E. A. (1968). Four cycles of mass selection in a syntheticvariety of an autogamous species Nicotiana tabacum L. Crop Science, 8, 239–243.

    Article  Google Scholar 

  • McCoy, R., & Martinez-Lopez, G. (1982). Phytomonas staheli associated with coconut and oil palm diseases in Colombia. Plant Disease, 66, 675–677.

    Article  Google Scholar 

  • Michailides, T., & Spotts, R. (1990). Postharvest diseases of pome and stone fruits caused by Mucorpiriformis in the Pacific Northwest and California. Plant Disease, 74, 537–543.

    Article  Google Scholar 

  • Miedaner, T. (2016). Breeding strategies for improving plant resistance to diseases. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 561–599). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Padmanabhan, S. Y. (1973). The great Bengal famine. Annual Review of Phytopathology, 11, 11–26.

    Article  Google Scholar 

  • Plank, J. V. D. (1963). Plant diseases: Epidemics and control. Plant protection conference, 1956 (p. 53). London: Butterworth.

    Google Scholar 

  • Polley, R. W., & Thomas, M. R. (1991). Surveys of diseases of winter wheat in England and Wales, 1976−1988. Annals of Applied Biology, 119, 1–20.

    Article  Google Scholar 

  • Raju, B., & Wells, J. (1986). Diseases caused by fastidious xylem-limited bacteria and strategies for management. Plant Disease, 70, 182.

    Article  Google Scholar 

  • Risk, J. M., Selter, L. L., Krattinger, S. G., Viccars, L. A., Richardson, T. M., Buesing, G., & Herren, G. (2012). Functional variability of the Lr34 durable resistance gene in transgenic wheat. Plant Biotechnology Journal, 10, 477–487.

    Article  CAS  PubMed  Google Scholar 

  • Risk, J. M., Selter, L. L., Chauhan, H., Krattinger, S. G., Kumlehn, J., Hensel, G., & Viccars, L. A. (2013). The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnology Journal, 11, 847–854.

    Article  CAS  PubMed  Google Scholar 

  • Roane, C. W. (1973). Trends in breeding for disease resistance in crops. Annual Review of Phytopathology, 11, 463–486.

    Article  Google Scholar 

  • Roberts, E. H. (1975). Problems of long-term storage of seed and pollen for genetic resources conservation. In O. H. Frankel & J. G. Hawkes (Eds.), Crop genetic resources for today and tomorrow (pp. 269–295). Cambridge: Cambridge University Press.

    Google Scholar 

  • Scott, P. R. (1981). Variation in host susceptibility. In M. J. Asher & P. J. Shipton (Eds.), Biology and control of take-all (pp. 219–236). London: Academic.

    Google Scholar 

  • Severns, P. M., Estep, L. K., Sackett, K. E., & Mundt, C. C. (2014). Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread. Journal of Applied Ecology, 51(6), 1622–1630.

    Google Scholar 

  • Sharma, H. C., Venkateswarulu, G., & Sharma, A. (2003). Environmental factors influence the expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica, 130, 365–375.

    Article  Google Scholar 

  • Singh, D. P. (1986). Breeding for resistance to diseases and insect pests. Berlin/New York/London: Springer.

    Book  Google Scholar 

  • Singh, R. P., Huerta-Espino, J., & William, H. M. (2005). Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 29, 121–127.

    CAS  Google Scholar 

  • Smith, D. A., & Banks, S. W. (1986). Biosynthesis, elicitation and biological activity of isoftavonoid phytoalexins. Phytochemistry, 25, 979–995.

    Article  CAS  Google Scholar 

  • Sreewongchai, T., Toojinda, T., Thanintorn, N., Kosawang, C., Vanavichit, A., Tharreau, D., & Sirithunya, P. (2010). Development of elite indica rice lines with wide spectrum of resistance to Thaiblast isolates by pyramiding multiple resistance QTLs. Plant Breeding, 129, 176–180.

    Article  CAS  Google Scholar 

  • Stoskopf, N. C., Tomes, D. T., & Christie, B. R. (1993). Plant breeding: Theory and practice. Boulder: Westview Press.

    Google Scholar 

  • Strange, R. N. (1993). Organisms that cause plant disease: Their detection, identification and proof of their role as pathogens. In Plant disease control (pp. 31–61). Boston: Springer.

    Chapter  Google Scholar 

  • Strange, R. N. (2006). Introduction to plant pathology. New Delhi: Wiley.

    Google Scholar 

  • Strange, R. N. (2013). Plant disease control: Towards environmentally acceptable methods. Boston: Springer, US, 354 pp.

    Google Scholar 

  • Sucher, J., Boni, R., Yang, P., Rogowsky, H., Büchner, H., Kastner, C., et al. (2017). The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnology, 15, 489–496. https://doi.org/10.1111/pbi.12647.

    Article  CAS  Google Scholar 

  • Thresh, J. M., & Owusu, G. K. (1986). The control of cocoa swollen shoot disease in Ghana: An evaluation of eradication procedures. Crop Protection, 5, 41–52.

    Article  Google Scholar 

  • Toojinda, T., Tragoonrung, S., Vanavichit, A., Siangliw, J. L., Pa-In, N., Jantaboon, J., et al. (2005). Molecular breeding for rainfed lowland rice in the Mekong region. Plant Production Science, 8, 330–333.

    Article  CAS  Google Scholar 

  • Ullstrup, A. J. (1972). The impacts of the southern corn leaf blight epidemics of 1970-1971. Annual Review of Phytopathology, 10, 37–50.

    Article  Google Scholar 

  • Van Bueren, E. L., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Messmer, M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wageningen Journal of Life Sciences, 58, 193–205.

    Article  Google Scholar 

  • Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64, 1263–1280.

    Article  CAS  PubMed  Google Scholar 

  • Welz, H. G., & Geiger, H. H. (2000). Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breeding, 119, 1–4.

    Article  CAS  Google Scholar 

  • Withers, L. A. (1989). In vitro conservation and germplasm multiplication. In A. H. D. Brown, O. H. Frankel, D. R. Marshall, & J. T. Williams (Eds.), The use of plant genetic resources (pp. 309–334). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wolfe, M. S., & Barrett, J. A. (1979). Disease in crops: Controlling the evolution of plant pathogens. Journal of the Royal Society of Arts, 127, 321–333.

    Google Scholar 

  • Wolfe, M. S., & Gessler, C. (1992). The use of resistance genes in breeding epidemiological considerations. In T. Boller & F. Meins (Eds.), Genes involved in plant defense (pp. 3–23). Wien: Springer.

    Chapter  Google Scholar 

  • Wyss, U. (1981). Ectoparasitic root nematodes: Feeding behavior and plant cell responses. In B. M. Zuckerman & R. A. Rhode (Eds.), Plant parasitic nematodes (Vol. III, pp. 325–351). New York: Academic.

    Chapter  Google Scholar 

  • Zadoks, J. C. (2001). Plant disease epidemiology in the twentieth century. A picture by means of selected controversies. Plant Disease, 85, 808–816.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A.H., Hassan, M., Khan, M.N. (2020). Conventional Plant Breeding Program for Disease Resistance. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_3

Download citation

Publish with us

Policies and ethics