Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

Abstract

Quarantine is one of the approaches adopted for the management of plant diseases. It restricts the movement of pathogens between geographical areas. Different plant pathogens includingbacteria, fungi, virus and nematodes can be ruled out from different economically important crops, through quarantine regulations. Actually several countries are implementing the quarantine rules and regulations at air and sea ports. Different international agencies related to plant health published lists of quarantine pests to exclude. Plant protection and health are the major aims of quarantine and help in formulating and implementing of quarantine procedures and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M. J., Hendrickson, R. C., Dempsey, D. M., & Lefkowitz, E. J. (2015). Tracking the changes in virus taxonomy. Archives of Virology, 160, 1375–1383.

    Article  CAS  PubMed  Google Scholar 

  • Anon. (1914). Actes de la Conférence Internationale de Phytopathologie (pp. 237–241). Rome: Institut International d’Agriculture.

    Google Scholar 

  • Anon. (1996). Glossary of Phytosanitary terms. Paris: European and Mediterranean Plant Protection Organisation.

    Google Scholar 

  • Anon. (2002). Glossary of Phytosanitary Terms 2002. In International standards for Phytosanitary measures no 5. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Baker, C. R. B., Barker, I., Bartlett, P. W., & Wright, D. M. (1993). Western flower thrips, its introduction and spread in Europe and role as a vector of tomato spotted wilt virus. In D. L. Ebbels (Ed.), Plant Health and the European Single Market (Monograph No. 54) (pp. 355–360). Farnham Royal: British Crop Protection Council.

    Google Scholar 

  • Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical perspective, development and applications of next generation sequencing in plant virology. Viruses, 6, 106–136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beale, R., Fairbrother, J., Inglis, A., & Trebeck, D. (2008). One biosecurity: a working partnership. Independent review of Australia’s quarantine and biosecurity arrangements. Rep. Aust. Gov., Dep. Agric. Fish. For., Sydney.

    Google Scholar 

  • Bebber, D. P. (2015). Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology, 53, 335–356.

    Article  CAS  PubMed  Google Scholar 

  • Bertazzon, N., & Angelini, E. (2004). Advances in the detection of grapevine leafroll associated virus 2 variants. Journal of Plant Pathology, 86, 283–290.

    CAS  Google Scholar 

  • Bertolini, E., Teresani, G. R., Loiseau, M., Tanaka, F. A. O., Barbé, S., et al. (2015). Transmission of “Candidatus Liberibacter solanacearum” in carrot seeds. Plant Pathology, 64, 276–285.

    Article  CAS  Google Scholar 

  • Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., et al. (2014). Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Research, 186, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Bull, C. T., De Boer, S. H., Denny, T. P., Firrao, G., Fischer-Le Saux, M., et al. (2012). List of new names of plant pathogenic bacteria (2008–2010). Journal of Plant Pathology, 94, 21–27.

    Google Scholar 

  • Bull, C. T., Coutinho, T. A., Denny, T. P., Firrao, G., Fischer-Le Saux, M., et al. (2014). List of new names of plant pathogenic bacteria (2011–2012). Journal of Plant Pathology, 96, 223–226.

    Google Scholar 

  • Chamberlain, C. J., Kraus, J., Kohnen, P. D., Finn, C. E., & Martin, R. R. (2003). First report of Raspberry bushy dwarf virus in Rubus multibracteatus from China. Plant Disease, 87, 603.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier, S., Greiff, C., Clauzel, J. M., Walter, B., & Fritsch, C. (1995). Use of immunocapture-polymerase chain reaction procedure for the detection of grapevine virus A in Kober stem grooving-infected grapevines. Journal of Phytopathology, 143, 369–373.

    Article  CAS  Google Scholar 

  • Christensen, N. M., Nicolaisen, M., Hansen, M., & Schultz, A. (2004). Distribution of phytoplasmas in infected plants as revealed by real time PCR and bioimaging. Molecular Plant-Microbe Interactions, 17, 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M. F. (1981). Immunosorbent assays in plant pathology. Annual Review of Phytopathology, 19, 83–106.

    Article  CAS  Google Scholar 

  • Clark, C. A., Davis, J. A., Abad, J. A., Cuellar, W. J., Fuentes, S., et al. (2012). Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Disease, 96, 168–185.

    Article  CAS  PubMed  Google Scholar 

  • Constable, F. E., Gibb, K. S., & Symons, R. H. (2003). The seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology, 52, 267–276.

    Article  Google Scholar 

  • Constable, F. E., Connellan, J., Nicholas, P., & Rodoni, B. C. (2013). The reliability ofwoody indexing for detection of grapevine virus-associated diseases in three different climatic conditions in Australia. Australian Journal of Grape and Wine Research, 19, 74–80.

    Article  Google Scholar 

  • Constable, F. E., Nancarrow, N., Kelly, G., Milinkovic, M., Ko, L., et al. (2016). Improved diagnostic testing and on farm biosecurity plan to support Australian strawberry certification programs. Acta Horticulturae, (1117), 171–176.

    Google Scholar 

  • Diamond, J. (1998). Guns, Germs and Steel. A Short History of Everybody for the Last 13,000 Years (pp. 104–113). London: Vintage Random House.

    Google Scholar 

  • Ebbels, D. L. (2003). Principals of plant health and quarantine. Wallingford: CAB International.

    Book  Google Scholar 

  • EPPO. (2014). PM 7/76 (3) Use of EPPO diagnostic protocols. EPPO Bulletin, 44, 335–337.

    Article  Google Scholar 

  • Fajardo, T. V. M., Barros, D. R., Nickel, O., Kuhn, G. B., & Zerbini, F. M. (2007). Variability of the coat protein gene of Grapevine leafroll-associated virus 3 in Brazil. Fitopatol Brasil, 32, 335–340.

    Article  Google Scholar 

  • FAO. (2004). Pest risk analysis for quarantine pests, including analysis or environmental risks and living modified organisms. Int. Stand. Phytosanit. Meas. Number 11, Food Agric. Organ., Rome.

    Google Scholar 

  • FAO. (2007). Framework for pest risk analysis. Int. Stand. Phytosanit. Meas. Number 2, Food Agric. Organ., Rome.

    Google Scholar 

  • Fulling, E. H. (1942). Plant life and the law of man. III. Barberry eradication. Journal of the New York Botanical Garden, 43, 152–157.

    Google Scholar 

  • Fulling, E. H. (1943). Plant life and the law of man. IV. Barberry, currant and gooseberry, and cedar control. The Botanical Review, 9, 483–592.

    Article  Google Scholar 

  • Frost, K. E., Groves, R. L., & Charkowski, A. O. (2013). Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Disease, 97, 1268–1280.

    Article  PubMed  Google Scholar 

  • Gergerich, R. C., Welliver, R. A., Gettys, S., Osterbauer, N. K., Kamenidou, S., et al. (2015). Safeguarding fruit crops in the age of agricultural globalization. Plant Disease, 99, 176–187.

    Article  PubMed  Google Scholar 

  • Gugerli, P. (2009). 25 years of serological identification of grapevine leafroll-associated viruses: antiserum and monoclonal antibodies to GLRaV-1 to GLRaV-9. ICVG, 16, 24–28.

    Google Scholar 

  • Gundersen, D. E., & Lee, I.-M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.

    CAS  Google Scholar 

  • Hobhouse, H. (1992). Seeds of Change. Five Plants that Transformed Mankind. London: PaperMac.

    Google Scholar 

  • Hopkins, D., & Purcell, A. (2002). Xylella fastidiosa: Cause of Pierce’s disease of grapevine and other emergent diseases. Plant Disease, 86, 1056–1066.

    Article  CAS  PubMed  Google Scholar 

  • Hsu H.T., Franssen J.M., van der Hulst C.T.C., Derks A.F.L.M., Lawson R.H. 1988. Factors affecting selection of epitope specificity of monoclonal antibodies to tulip breaking potyvirus. Phytopathology 78:1337–1340.

    Article  Google Scholar 

  • Hopper, B. E. (1995). NAPPO compendium of Phytosanitary terms. north American plant protection organisation. Ontario: Nepean.

    Google Scholar 

  • Hull, R. (2013). Plant virology (5th ed.). New York: Academic.

    Google Scholar 

  • Isard, S. A., Gage, S. H., Comtois, P., & Russo, J. M. (2005). DATE principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience, 55, 851–861.

    Article  Google Scholar 

  • Huttinga, H. (1996). Sensitivity of indexing procedures for viruses and viroids. Advances in Botanical Research, 23, 59–71.

    Article  Google Scholar 

  • Jordan, R., & Hammond, J. (1991). Comparison and differentiation of potyvirus isolates and identification of strain-, virus-, subgroup-specific and potyvirus group-common epitopes using monoclonal antibodies. The Journal of General Virology, 72, 25–36.

    Article  PubMed  Google Scholar 

  • Knobler, S., Mahmoud, A., Lemon, S., & Pray, L. (2006). The Impact ofGlobalization on InfectiousDisease Emergence and Control. Washington, DC: The National Academies Press.

    Google Scholar 

  • Krupa, S., Bowersox, V., Claybrooke, R., Barnes, C. W., Szabo, L., et al. (2006). Introduction of Asian soybean rust urediniospores into the midwestern United States: a case study. Plant Disease, 90, 1254–1259.

    Article  PubMed  Google Scholar 

  • Large, E. C. (1940). The Advance of the Fungi. London: Jonathan Cape.

    Google Scholar 

  • Lopez, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M., & Bertolini, E. (2009). Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Current Issues in Molecular Biology, 11, 13–46.

    CAS  PubMed  Google Scholar 

  • MacDiarmid, R., Rodoni, B., Melcher, U., Ochoa-Corona, F., & Roossinck, M. (2013). Biosecurity implications of new technology and discovery in plant virus research. PLoS Pathogen, 9, e1003337.

    Article  CAS  Google Scholar 

  • MacKenzie, D. (2001). All fall down. New Scientist, 172, 34–37.

    Google Scholar 

  • Maliogka, V. I., Dovas, C. I., & Katis, N. I. (2007). Demarcation of ilarviruses based on the phylogeny of RNA2- encoded RdRp and a generic ramped annealing RT-PCR. Archives of Virology, 152, 1687–1698.

    Article  CAS  PubMed  Google Scholar 

  • Martin, R. R., MacFarlane, S., Sabanadzovic, S., Quito, D., Poudel, B., & Tzanetakis, I. E. (2013). Viruses and virus diseases of Rubus. Plant Disease, 97, 168–182.

    Article  PubMed  Google Scholar 

  • Martin, R. R., James, D., & Levesque, C. A. (2000). Impacts ofmolecular diagnostics on plant disease management. Annual Review of Phytopathology, 38, 207–239.

    Article  CAS  PubMed  Google Scholar 

  • McCartney, H. A., Foster, S. J., Fraaije, B. A., & Ward, E. (2003). Molecular diagnostics for fungal plant pathogens. Pest Management Science, 59, 129–142.

    Article  CAS  PubMed  Google Scholar 

  • McRae, C. F., & Wilson, D. (2002). Plant health as a trade policy issue. Australasian Plant Pathology, 31, 103–105.

    Article  Google Scholar 

  • Nairn, M. E., Allen, P. G., Inglis, A. R., & Tanner, C. (1996). Australian Quarantine:A Shared Responsibility. Canberra: Dep. Prim. Ind. Energy.

    Google Scholar 

  • Ochoa-Corona, F. M. (2011). Biosecurity, microbial forensics and plant pathology: Education challenges, overlapping disciplines and research needs. Australasian Plant Pathology, 40, 335–338.

    Article  Google Scholar 

  • Plant Health Australia. (2013). Industry biosecurity plan for the potato industry. Version 2 (p. 0). Plant Health Aust: Canberra, Aust. http://www.planthealthaustralia.com.au.

    Google Scholar 

  • Plesˇko, I. M., Marn, M. V., Sˇ irca, S., & Urek, G. (2009). Biological, serological and molecular characterisation of Raspberry bushy dwarf virus from grapevine and its detection in the nematode Longidorus juvenilis. European Journal of Plant Pathology, 123, 261–268.

    Article  Google Scholar 

  • Powney, R., Beer, S., Plummer, K., Luck, J., & Rodoni, B. (2011). The specificity of PCR-based protocols for detection of Erwinia amylovora. Australasian Journal of Plant Pathology, 40, 87–97.

    Article  Google Scholar 

  • Purcell, A. H., & Saunders, S. R. (1999). Fate of Pierce’s disease strains of Xylella fastidiosa in common riparian plants in California. Plant Disease, 83, 825–830.

    Article  CAS  PubMed  Google Scholar 

  • Riley M. B., Williamson M. R., & Maloy O. 2002. Plant disease diagnosis. Plant Health Instructor. doi:https://doi.org/10.1094/PHII.

  • Roossinck, M. J. (2005). Symbiosis versus competition in plant virus evolution. Nat. Rev.Microbiol., 3, 917–924.

    Article  CAS  PubMed  Google Scholar 

  • Roossinck M, J., Saha, P., Wiley, G. B., Quan, J., White, J. D., et al. (2010). Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81–88.

    Article  PubMed  Google Scholar 

  • Rowhani, A., Uyemoto, J. K., Golino, D., & Martelli, G. P. (2005). Pathogen testing and certification of Vitis and Prunus species. Annual Review of Phytopathology, 43, 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., & Petrillo, M. D. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41, 305–324.

    Article  CAS  PubMed  Google Scholar 

  • Sefc, K. M., Leonhardt, W., & Steinkellner, H. (2000). Partial sequence identification of Grapevine-leafroll associated virus-1 and development of a highly sensitive IC-RT-PCR detection method. Journal of Virological Methods, 86, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Seyrig, G., Stedtfeld, R. D., Tourlousse, D. M., Ahmad, F., Towery, K., et al. (2015). Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. Journal of Microbiological Methods, 119, 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Bhavani, S., et al. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, 465–481.

    Article  CAS  PubMed  Google Scholar 

  • Stack, J. P. (2006). Challenges to crop biosecurity. In J. ML Guillino, A. G. Fletcher, & J. P. Stack (Eds.), Crop biosecurity: Assuring OurGlobal food supply (NATO science for peace and security series-C: Environmental security) (pp. 15–23). Dordrecht: Springer.

    Google Scholar 

  • Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222.

    Article  Google Scholar 

  • Vincelli, P., & Tisserat, N. (2008). Nucleic acid–based pathogen detection in applied plant pathology. Plant Disease, 92, 660–669.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg, W., Barns, S., Pelletier, D., & Lane, D. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  Google Scholar 

  • Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63, 3741–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Trade Organization. (1994). Agreement on the application of sanitary and phytosanitary measures. In Results of the Uruguay Round of Multilateral Trade Negotiations: The Legal Texts (pp. 69–84). Geneva, Switz: WTO.

    Google Scholar 

  • Wren, J. D., Roossinck, M. J., Nelson, R. S., Scheets, K., Palmer, M. W., & Melcher, U. (2006). Plant virus biodiversity and ecology. PLoS Biology, 4, e80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, L., Rodoni, B. C., Gibbs, M. J., & Gibbs, A. J. (2010). A novel pair of universal primers for the detection of potyviruses. Plant Pathology, 59, 211–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Iftikhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iftikhar, Y., Sajid, A. (2020). Quarantine and Regulations. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_14

Download citation

Publish with us

Policies and ethics