Skip to main content

Genome Editing Technologies for Resistance Against Phytopathogens: Principles, Applications and Future Prospects

  • Chapter
  • First Online:
Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

Abstract

Genetic variation in crop plants is an indispensable factor for sustainable agriculture. For creating genetic variation, plant biotechnology relied on various random mutagenesis approaches such as γ-radiation, EMS generated mutagenesis etc. Now these methods are being replaced by genome editing technologies that precisely manipulate specific sequences in the genome. These technologies, based on sequence-specific nucleases (SSNs), mediated double-strand breaks in DNA at specific sites within the genome. Among them, three foundational targeted genome editing technologies are: TALENs (transcription activator-like effector nucleases), CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) and ZFNs (zinc-finger nucleases). TALENs and ZNFs are synthetic engineered bipartite enzymes, consisting of two domains, (1) DNA binding domain and (2) Fok1 domain (nuclease).CRISPR/Cas 9 is a two-component unicellular machinery, with a sgRNA first component (which targets the specific sequence in genome), and Cas 9 as a second component (an enzyme that mediates site-specific targeting of genome). The Cas9 protein is DNA nuclease whose activity is determined by target seed sequence (first 20 nucleotides) of sgRNA. Therefore, multiple sgRNAs with different target seed sequences direct Cas9 to corresponding spots. This imperative characteristic of Cas9 enables it to edit at multiple sites simultaneously and imparts potential applications in both basic and applied research. By using these approaches, disease resistance in plants is achieved by knocking out those loci contributing in disease susceptibility and negative regulator genes in genome. Thereby these techniques are becoming a new toolbox of every modern molecular biology laboratory for editing plant genome. This chapter provides a detailed overview of genome editing approaches for developing disease resistant in plants, describing comprehensive knowledge on genome editing principles, application of these techniques, challenges and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andolfo, G., & Ercolano, M. R. (2015). Plant innate immunity multicomponent model. Frontiers in Plant Science, 6, 987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker, M. (2011). Method of the year. Nature Methods, 9, 1.

    Google Scholar 

  • Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, D. F., Fahrenkrug, S. C., & Hackett, P. B. (2012). Targeting DNA with fingers and TALENs. Molecular Therapy-Nucleic Acids, 1(1), e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cathomen, T., & Joung, J. K. (2008). Zinc-finger nucleases: The next generation emerges. Molecular Therapy, 16, 1200–1207.

    Article  CAS  PubMed  Google Scholar 

  • Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, 82.

    Article  CAS  Google Scholar 

  • Chapman, J. R., Taylor, M. R., & Boulton, S. J. (2012). Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 47, 497–510.

    Article  CAS  PubMed  Google Scholar 

  • Char, S. N., Unger-Wallace, E., Frame, B., Briggs, S. A., Main, M., Spalding, M. H., et al. (2015). Heritable site-specific mutagenesis using TALEN s in maize. Plant Biotechnology Journal, 13, 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  • Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, X., Jiang, Z., Peng, Y. L., & Zhang, Z. (2015). Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis. Plant Physiology, 167(3), 1186–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., & Chandrasegaran, S. (2005). Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Research, 33, 5978–5990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., et al. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87(1–2), 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109, E2579–E2586.

    Article  CAS  Google Scholar 

  • Gawehns, F., Cornelissen, B. J., & Takken, F. L. (2013). The potential of effector-target genes in breeding for plant innate immunity. Microbial Biotechnology, 6, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A., Christensen, R. G., Rayla, A. L., Lakshmanan, A., Stormo, G. D., & Wolfe, S. A. (2012). An optimized two-finger archive for ZFN-mediated gene targeting. Nature Methods, 9, 588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P. D., & Zhang, F. (2012). Dissecting neural function using targeted genome engineering technologies. ACS Chemical Neuroscience, 3, 603–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jankele, R., & Svoboda, P. (2014). TAL effectors: Tools for DNA targeting. Briefings in Functional Genomics, 13, 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2014). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, 188.

    Article  CAS  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323.

    Article  CAS  PubMed  Google Scholar 

  • Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14, 49.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 93, 1156–1160.

    Article  CAS  Google Scholar 

  • Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Z., Zhang, K., Chen, K., & Gao, C. (2013). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, G. H., Qu, J., Suzuki, K., Nivet, E., Li, M., Montserrat, N., et al. (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491, 603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, J. (2016). CRISPR/Cas9: From genome engineering to cancer drug discovery. Trends in Cancer, 2, 313–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani, M., Kandavelou, K., Dy, F. J., Durai, S., & Chandrasegaran, S. (2005). Design, engineering, and characterization of zinc finger nucleases. Biochemical and Biophysical Research Communications, 335, 447–457.

    Article  CAS  PubMed  Google Scholar 

  • Mohanta, T., Bashir, T., Hashem, A., Abd-Allah, E., & Bae, H. (2017). Genome editing tools in plants. Genes, 8, 399.

    Article  PubMed Central  CAS  Google Scholar 

  • Nejat, N., Rookes, J., Mantri, N. L., & Cahill, D. M. (2016). Plant–pathogen interactions: Toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 37, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Niks, R. E., Qi, X., & Marcel, T. C. (2015). Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 53, 445–470.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., & Sharma, S. B. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  • Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology, 17, 1276–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., et al. (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants. Biotechnology Letters, 38(12), 1991–2006.

    Article  CAS  PubMed  Google Scholar 

  • Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., et al. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant, 6, 1365–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013b). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686.

    Article  CAS  PubMed  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947.

    Article  CAS  PubMed  Google Scholar 

  • Wendt, T., Holm, P. B., Starker, C. G., Christian, M., Voytas, D. F., Brinch-Pedersen, H., & Holme, I. B. (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology, 83, 279–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript profiling in host–pathogen interactions. Annual Review of Phytopathology, 45, 329–369.

    Article  CAS  PubMed  Google Scholar 

  • Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR–Cas system. Molecular Plant, 6(6), 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, J. S., Ding, J., & Li, Y. (2015). Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research, 2, 15019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, K. (2012). The next generation of biotechnology for apple improvement and beyond, the tale of TALENs and TALEs. NY Fruit Quart, 20, 17–20.

    CAS  Google Scholar 

  • Zaka, A., Grande, G., Coronejo, T., Quibod, I. L., Chen, C. W., Chang, S. J., Szurek, B., Arif, M., Cruz, C. V., & Oliva, R. (2018). Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. PLoS One, 13, e0203711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ijaz, S., Ul Haq, I. (2020). Genome Editing Technologies for Resistance Against Phytopathogens: Principles, Applications and Future Prospects. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_11

Download citation

Publish with us

Policies and ethics