Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

  • 1018 Accesses

Abstract

RNA interference (RNAi) is a novel technique in the field of functional genomics. It has an immense potential for managing plant diseases by down regulating expression of phytopathogens’ genes (invader’s gene) and other negative regulators of resistance pathways. This technique has become a breakthrough in the field of managing plant diseases rather than implementing biological and chemical control measures. RNAi mechanism involves the silencing of specific genes responsible for infection in the host plant, in a homology-dependent manner, before their translation. Incorporation of RNAi over the time has become one of the most promising technology, which reduces the risks incurred in the production of transgenic plants. The idea of gene silencing has been successful under laboratory conditions, and it is now gaining importance for field applications as well. However, problem presently to solve include delivering RNAi gene silencing in the field, in a convenient way for managing fungal, bacterial and viral plant diseases, on host-pathogen related targeted sites. This chapter will give an insight on the strategies of delivering RNAi mediated gene silencing and managing plant diseases in a most practical way for the farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright, V. C., Wong, C. R., Hellmich, R. L., & Coats, J. R. (2017). Dissipation of double-stranded RNA in aquatic microcosms. Environmental Toxicology and Chemistry, 36, 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, C. E., & Hunter, W. B. (2016). In I. Y. Abdurakhmonov (Ed.), RNA interference – Natural gene-based technology for highly specific pest control (HiSPeC) in RNA interference (pp. 391–409). Croatia: InTech.

    Google Scholar 

  • Andradeab, C. M., Tinocoa, M. L. P., Rietha, A. F., Maiaa, F. C. O., & Aragao, F. J. L. (2015). Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology, 65, 626–632.

    Article  CAS  Google Scholar 

  • Aragao, F. J., & Faria, J. C. (2009). First transgenic gemini-virus-resistant plant in the field. Nature Biotechnology, 27, 1086–1088.

    Article  CAS  PubMed  Google Scholar 

  • Armas-Tizapantz, A., & Mozntiel-Gonzalez, A. M. (2016). RNAi silencing: A tool for functional genomics research on fungi. Fungal Biology Reviews, 30, 91–100.

    Article  Google Scholar 

  • Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    Article  CAS  PubMed  Google Scholar 

  • Bertazzon, N., Raiola, A., Castiglioni, C., Gardiman, M., Angelini, E., Borgo, M., & Ferrari, S. (2012). Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interfer-ence. Plant Cell Reports, 31, 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen, N., Horton, M. W., & Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 8, e56329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, E. A., & Aragao, F. J. (2007). RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant-Microbe Interactions, 20, 717–726.

    Article  CAS  PubMed  Google Scholar 

  • Brodersen, P., & Voinnet, O. (2006). The diversity of RNA silencing pathways in plants. Trends in Genetics, 22, 268–280.

    Article  CAS  PubMed  Google Scholar 

  • Broglie, K. I., Chet, M., & Holliday, M. N. (1991). Transgenic plants with enhanced resistance to fungal pathogen Rhizoctonia solani. Science, 254, 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  • Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., & Zurcher, E. J. E. (1996). Plant viruses online: Descriptions and lists from the VIDE database (Version: 20th August 1996).

    Google Scholar 

  • Cai, Q., He, B., Kogel, K. H., & Jin, H. (2018). Cross-kingdom RNA trafficking and environmental RNAi — nature’s blueprint for modern crop protection strategies. Current Opinion in Microbiology, 46, 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell, A., Martinez de Alba, A. E., Flores, R., & Gago, S. (2008). Double stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology, 371, 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Cerutti, H., & Ibrahim, F. (2010). Turnover of mature miRNAs and siRNAs in plants and algae. Advances in Experimental Medicine and Biology, 700, 124–139.

    Article  PubMed  Google Scholar 

  • Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., & Carrington, J. C. (2004). Viral RNA silencing suppressors inhibit the micro-RNA pathway at an interphase step. Genes and Development, 18, 1179–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Gao, Q. X., Haung, M. M., Liu, Y., Liu, Z. Y., & Liu, X. (2015). Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Science Reports-UK, 5, 12500.

    Article  Google Scholar 

  • Cheng, W., Song, X. S., Li, H. P., Cao, L. H., Sun, K., & Qiu. (2015). Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnology Journal, 13, 1335–1345.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K. H. (2017). The structure and function of the gram-positive bacterial RNA degradosome. Frontiers in Microbiology, 8, 1–10.

    Google Scholar 

  • Chuang, C. F., & Meyerowtiz, E. M. (2000). Specific and heritable genetic interference by double–stranded RNA in Arabidopsis thaliana. PNAS, 97, 4985–4990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolgov, S., Mikhaylov, R., Serova, T., Shulga, O., & Firsov, A. (2010). Pathogen–derived methods for improving resistance of transgenic plums (Prunus domestica L.) for plum pox virus infection. Julius–Kuhn–Arch, 427, 133–140.

    Google Scholar 

  • Duan, C. G., Wang, C. H., & Guo, H. S. (2012). Application of RNA silencing to plant disease resistance. Silence, 3, 1–8.

    Article  CAS  Google Scholar 

  • Dubelman, S., Fischer, J., Zapata, F., Huizinga, K., Jiang, C., Uffman, J., & Levine, S. (2014). Environmental fate of double–stranded RNA in agricultural soils. PLoS One, 9, e93155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A., & Voinnet, O. (2007). Intra– and Intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing path–ways. Nature Genetics, 39, 848–856.

    Article  CAS  PubMed  Google Scholar 

  • Escobar, M. A., Civerolo, E. L., Summerfelt, K. R., & Dandekar, A. M. (2001). RNAi–mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 13437–13442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar, M. A., Leslie, C. A., Mcgranahan, G. H., & Dandekar, A. M. (2002). Silencing crown gall disease in walnut (Julgans regia L.). Plant Science, 163, 591–597.

    Article  CAS  Google Scholar 

  • Fagwalawd, I. D., Kutama, A. S., & Yakasai, M. T. (2013). Current issues in plant disease control: Biotechnology and plant disease. Bayero Journal of Pure and Applied Sciences (BAJOPAS), 6, 121–126.

    Article  Google Scholar 

  • Fitzgerald, A., Van, K. J. A., & Plummer, K. M. (2004). Simultaneous silencing of multiple genes in the apple scab fungus Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genetics and Biology, 41, 963–971.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, J., Bender, C., Budowle, B., Cobb, W. T., Gold, S. E., Ishimaru, C. A., & Luster, D. (2006). Plant pathogen forensics: Capabilities, needs, and recommendations. Microbiology and Molecular Biology Reviews, 70, 450–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, D., Zhang, J., Jiang, H., Jiang, T., Zhu, S., & Cheng, B. (2010). Bacterially expressed dsRNA protects maize against SCMV infection. Plant Cell Reports, 29, 1261–1268.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., & Brempelis, K. J. (2010). Arabidopsis RNA–dependent RNA polymerases and dicer–like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. The Plant Cell, 22, 481–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajulu, M., Epstein, L., Wroblewski, T., & Michelmore, R. W. (2015). Host–induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnology Journal, 13, 875–883.

    Article  CAS  PubMed  Google Scholar 

  • Hily, J. M., & Liu, Z. (2007). An overview of small RNAs. In C. L. Bassett (Ed.), Regulation of gene expression in plants (pp. 123–147). Berlin: Springer–Verlag.

    Chapter  Google Scholar 

  • International service for acquisition of agri–biotech applications. (2012). Pocket K No. 34: RNAi for crop improvement. Available Source: http://isaaa.org/resources/publications/pocketk/34/default.asp

  • Jahan, S. N., Asman, A. K. M., Corcoran, P., Fogelqvist, J., Vetukuri, R. R., & Dixelius, C. (2015). Plant mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. Journal of Experimental Botany, 66, 2785–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, C. J., Shimono, M., Maeda, S., Inoue, H., Mori, M., Hasegawa, M., et al. (2009). Suppression of the rice fatty–acid desaturase gene Os- SSI2 enhances resistance to blast and leaf blight diseases in rice. Molecular Plant-Microbe Interactions, 22, 820–829.

    Article  CAS  PubMed  Google Scholar 

  • Kadotani, N., Nakayashiki, H., Tosa, Y., & Mayama, S. (2003). RNA silencing in the pathogenic fungus Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 16, 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Aggarwal, S., & Jin, H. (2007). Discovery of pathogen–regulated small RNAs in plants. Methods in Enzymology, 427, 215–227.

    Article  CAS  Google Scholar 

  • Katiyar-Aggarwal, S., Rebekah, M., Douglas, D., Omar, B., Andy Villegas, J., Jian-Kang, Z., et al. (2006). Pathogen–inducible endogenous siRNA in plant immunity. Pest Management Science, 74, 790–799.

    Google Scholar 

  • Kew Royal Botanical Gardens. (2017). State of the world’s plants (pp. 66–71). Kew: Royal Botanic Gardens.

    Google Scholar 

  • Khan, A. M., Ashfaq, M., Kiss, Z., Khan, A. A., Mansoor, S., & Falk, B. W. (2013). Use of recombinant tobacco mosaic virus to achieve RNAinterference in plants against the Citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS ONE, 8, e73657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 1819, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Kjemtrup, S., Sampson, K. S., Peele, C. G., Nguyen, L. V., & Conkling, M. A. (1998). Gene silencing from plant DNA carried by a geminivirus. The Plant Journal, 14, 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Koch, A., & Kogel, K. H. (2014). New wind in the sails: Improving the agronomic value of crop plants through RNAi–mediated gene silencing. Plant Biotechnology Journal, 12, 821–831.

    Article  CAS  PubMed  Google Scholar 

  • Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. (2013). Host–induced gene silencing of cytochrome P450 lanosterol C14α–demethylase–encoding genes confers strong resistance to Fusarium species. Proceedings of the National Academy of Sciences of the United States of America, 110, 19324–19329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., & Linicus, L. (2016). An RNAi–based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathogens, 12, e1005901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konakalla, N. C., Kaldis, A., Berbati, M., Masarapu, H., & Voloudakis, A. E. (2016). Exogenous application of double–stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta, 244, 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai, M. H., Donson, J., della–Cioppa, G., Harvey, D., Hanley, K., & Grill, L. K. (1995). Cytoplasmic inhibition of carotenoid biosynthesis with virus–derived RNA. Proceedings of the National Academy of Sciences of the USA, 92, 1679–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladewig, K., Xu, Z. P., & Lu, G. Q. (2009). Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 6, 907–922.

    Article  CAS  PubMed  Google Scholar 

  • Laurila, M. R., Makeyev, E. V., & Bamford, D. H. (2002). Bacteriophage phi6 RNA–dependent RNA polymerase: Molecular details of initiating nucleic acid synthesis without primer. The Journal of Biological Chemistry, 277, 17117–17124.

    Article  CAS  PubMed  Google Scholar 

  • Li, L. D., Chang, S. S., & Liu, Y. (2010). RNA interference pathways in filamentous fungi. Cellular and Molecular Life Sciences, 67, 3849–3863.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. L., Schiff, M., & Dinesh Kumar, S. P. (2002). Virus-induced gene silencing in tomato. The Plant Journal, 31, 777–786.

    Article  CAS  PubMed  Google Scholar 

  • Makeyev, E. V., & Bamford, D. H. (2000). Replicase activity of purified recombinant protein P2 of double–stranded RNA bacteriophage phi6. The EMBO Journal, 19, 124–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., & Fletcher, S. J. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3, 1620.

    Article  CAS  Google Scholar 

  • Mohanpuria, P., Rana, N., & Yadav, S. (2008). Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos. Biologia Plantarum, 52, 381–384.

    Article  CAS  Google Scholar 

  • Moritoh, S., Miki, D., Akiyama, M., Kawahara, M., Izawa, T., Maki, H., & Shimamoto, K. (2005). RNAi–mediated silencing of OsGEN–L (OsGEN–like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant & Cell Physiology, 46, 699–715.

    Article  CAS  Google Scholar 

  • Nandety, R. S., Kuoy, Y. W., Nouriy, S., & Falk, B. W. (2015). Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered, 6, 8–19.

    Article  CAS  PubMed  Google Scholar 

  • Niblett, C. L., & Bailey, A. M. (2012). Potential applications of gene silencing or RNA interference (RNAi) to control disease and insect pests of date palm. Emirates Journal of Food and Agriculture, 24, 462–469.

    Google Scholar 

  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niehl, A., Marjukka, S., Poranen, M. M., & Manfred, H. (2018). Synthetic biology approach for plant protection using dsRNA. Plant Biotechnology Journal, 16, 1679–1687.

    Article  CAS  PubMed Central  Google Scholar 

  • Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., Hensel, G., Kumlehn, J., & Schweizer, P. (2010). HIGS: Host induced gene silencing in the obli–gate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 22, 3130–3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke, E. C. (2005). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Ozden, S., & Nuh, B. (2017). New approach in management against plant fungal disease: Host induced gene silencing. International Journal of Molecular Science, 1(1), 20–29.

    Google Scholar 

  • Palmer, K. E. & Rybicki, E. (2001). Investigation of the potential of maize streak virus to act as an infectious gene vector in maize plants. Archives of Virology, 146(6), 1089–1104.

    Google Scholar 

  • Pandolfini, T., Molesini, B., Avesani, L., Spena, A., & Polverari, A. (2003). Expression of self–complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotechnology, 3, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papolu, P. K., Gantasala, N. P., Kamaraju, D., Banakar, P., Sreevathsa, R., & Rao, U. (2013). Utility of host delivered RNAi of two FMRF amide like peptides, flp–14 and flp–18, for the management of root knot nematode, Meloidogyne incognita. PLoS One., 6;8(11), e80603.

    Article  CAS  Google Scholar 

  • Persengiev, S. P., Zhu, X., & Green, M. R. (2004). Non–specific, concentration–dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA, 10, 12–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooggin, M., Shivaprasad, P. V., Veluthambi, K., & Hohn, T. (2003). RNAi targeting of DNA virus in plants. Nature Biotechnology, 21, 131–132.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, M. K. R., Xu, Z. P., Lu, G., & da Costa, J. C. D. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45, 7504–7509.

    Article  CAS  Google Scholar 

  • Romano, N., & Macino, G. (1992). Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular Microbiology, 6, 3343–3353.

    Article  CAS  PubMed  Google Scholar 

  • Sanghera, G. S., Kashyap, P. L., Singh, G., & Teixeira da Silva, J. A. (2011). Transgenics: Fast track to plant stress amelioration. Transgenic Plant Journal, 5, 1–26.

    Google Scholar 

  • Sanju, S., Siddappa, S., Thakur, A., Shukla, P. K., Srivastava, N., Pattanayak, D., et al. (2015). Host mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Functional & Integrative Genomics, 15, 697–706.

    Article  CAS  Google Scholar 

  • Schweizer, P., Pokorny, P., Schulze-Lefert, P., & Dudler, R. (2000). Double stranded RNA interference with gene functions at the single cell in cereals. The Plant Journal, 24, 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Scofield, S. R., Huang, L., Brandt, A. S., & Gill, B. S. (2005). Development of a virus–induced gene–silencing system for hexaploid wheat and its use in functional analysis of the Lr21–mediated leaf rust resistance pathway. Plant Physiology, 138, 2165–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorza, R., Callahan, A., Dardick, C., Ravelonandro, M., Polak, J., Malinowski, T., Zagrai, I., & Cambra, M. (2013). Genetic engineering of plum pox virus resistance: ‘HoneySweet’ plum—From concept to product. Plant Cell, Tissue and Organ Culture, 115, 1–12.

    Article  CAS  Google Scholar 

  • Seemanpillai, M., Dry, I., Randles, J., & Rezaian, A. (2003). Transcriptional silencing of geminiviral promoter–driven transgenes following homologous virus infection. Molecular Plant-Microbe Interactions, 16, 429–438.

    Article  CAS  PubMed  Google Scholar 

  • Segers, G. C., Hamada, W., Oliver, R. P., & Pspanu, P. D. (1999). Isolation and characteristaion of five different hydrophobin–encoding cdna from the fungal tomato pathogen Cladosporium fulvum. Molecular & General Genetics, 261, 644–652.

    Article  CAS  Google Scholar 

  • Senthil-Kumar, M., & Mysore, K. S. (2010). RNAi in plants: Recent developments and applications in agriculture. In Gene silencing: Theory, techniques and applications (pp. 83–199). New York: NOVA Science Publishers, Inc.

    Google Scholar 

  • Shimizu, T., Yoshii, M., Wei, T., Hirochika, H., & Omura, T. (2009). Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, results in strong resistance of transgenic rice plants to the virus. Plant Biotechnology Journal, 7, 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. S. (2005). Introduction to principles of plant pathology (pp. 178–189). New Delhi: Oxford and IBH Publishing PVT. LTD.

    Google Scholar 

  • Son, H., Park, A. R., Lim, J. Y., Shin, C., & Lee, Y. W. (2017). Genome–wide exonic small interference RNA–mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum. PLoS Genetics, 13, e1006595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, Y., & Thomma, B. P. (2016). Host–induced gene silencing compromises Verticillium wilt in tomato and Arabidopsis. Molecular Plant Pathology, 19, 77–89. https://doi.org/10.1111/mpp.12500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkel, C. (2011). Host induced gene silencing – Strategies for the improvement of resistance against Cercospora beticola in sugar beet (B. vulgaris L.) and against Fusarium graminearum in wheat (T. aestivum L.) and maize (Z. mays L.) (Phd. Thesis, Berlin, Germany).

    Google Scholar 

  • Tenllado, F., & Diaz–Ruiz, J. R. (2001). Double–stranded RNA–mediated interference with plant virus infection. Journal of Virology, 75, 12288–12297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenllado, F., Barajas, D., Vargas, M., Atencio, F. A., Gonzalez–Jara, P., & Diaz–Ruiz, J. R. (2003). Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing. Molecular Plant-Microbe Interactions, 16, 149–158.

    Article  CAS  PubMed  Google Scholar 

  • Tinoco, M. L., Dias, B. B., Dall’Astta, R. C., Pamphile, J. A., & Aragao, F. J. (2010). In vivo trans– Specific gene silencing in fungal cells by in planta expression of a double–stranded RNA. BMC Biology, 31, 27.

    Article  CAS  Google Scholar 

  • Trieu, T. A., Calo, S., Nicolas, F. E., Vila, A., Moxon, S., & Dalmay, T. (2015). A non–canonical RNA silencing pathway promotes mRNA degradation in basal fungi. PLoS Genetics, 11, e1005168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turnage, M. A., Muangsan, N., Peele, C. G., & Robertson, D. (2002). Geminivirus–based vectors for gene silencing in arabidopsis. The Plant Journal, 30, 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Urich, T., Lanzén, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008). Simultaneous assessment of soil microbial community structure and function through analysis of the meta–transcriptome. PLoS One, 3, e2527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walawage, S. L., Britton, M. T., Leslie, C. A., Uratsu, S. L., Li, Y., & Dandekar, A. M. (2013). Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genomics, 14, 668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Weiberg, A., Lin, F. M., Thomma, B. P. H. J., Huang, H. D., & Jin, H. (2016). Bidirectional cross–kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants, 2, 16151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Weiberg, A., Dellota, E., Jr., Yamane, D., & Jin, H. (2017a). Botrytis small RNA Bc–siR37 suppresses plant defense genes by cross–kingdom RNAi. RNA Biology, 14, 421–428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Sun, Y. F., Song, N., Zhao, M. X., Liu, R., & Feng, H. (2017b). Puccinia striiformis f. sp tritici microRNA–like RNA 1 (Pst–milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis–related 2 gene. The New Phytologist, 215, 338–350.

    Article  CAS  PubMed  Google Scholar 

  • Wani, S. H., Sanghera, G. S., & Singh, N. B. (2010). Bio–technology and plant disease control–role of RNA interference. American Journal of Plant Sciences, 1, 55–68.

    Article  CAS  Google Scholar 

  • Waterhouse, P. M., Graham, M. W., & Wang, M. B. (1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and an–tisense RNA. Proceedings of the National Academy of Sciences, 95, 13959–13964.

    Article  CAS  Google Scholar 

  • Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., et al. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342, 118–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer, K. W., & Hirschi, K. D. (2014). Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration: Negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebraytes, but important questions persist. Bioessays, 36, 394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer, K. W., McAlexander, M. A., Queen, S. E., & Adams, R. J. (2013). Real–time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: Limited evidence for general uptake of dietary plant xenomiRs. RNA Biology, 10, 1080–1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wroblewski, T., Piskurewicz, U., Tomczak, A., & Ochoa Michelmore, R. W. (2007). Silencing of the major family of NBS–LRR–encoding genes in lettuce results in the loss of multiple resistance specificities. The Plant Journal, 51(5), 803–818.

    Article  CAS  PubMed  Google Scholar 

  • Wuriyanghan, H., & Falk, B. W. (2013). RNAinterference towards the potato psyllid, Bactericera cockerelli, is induced in plants infected with recombinant tobacco mosaic virus (TMV). PLoS ONE, 8, e66050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, C., & Hulbert, S. (2015). Host induced gene silencing (HIGS), a promising strategy for developing disease resistant crops. Gene Technology, 4, 130.

    Article  Google Scholar 

  • Yin, G., Sun, Z., Liu, N., Zhang, L., Song, Y., Zhu, C., & Wen, F. (2009). Production of double–stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Applied Microbiology and Biotechnology, 84, 323–333.

    Article  CAS  PubMed  Google Scholar 

  • Yin, C., Jurgenson, J. E., & Hulbert, S. H. (2011). Development of a host–induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f.sp.tritici. Molecular Plant-Microbe Interactions, 24, 554–561.

    Article  CAS  PubMed  Google Scholar 

  • Yin, C., Downey, S. I., Klages Mundt, N. L., Ramachandran, S., & Chen, X. (2015). Identification of promising host–induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genomics, 16, 579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, B., Latek, R., Hossbach, M., Tuschl, T., & Lewitter, F. (2004). siRNA selection server: An automated siR–NA oligonucleotide prediction server. Nucleic Acids Research, 32, 130–134.

    Article  CAS  Google Scholar 

  • Zhang, H., Guo, J., Voegele, R. T., Zhang, J., Duan, Y., Luo, H., & Kang, Z. (2012a). Functional characterization of calcineurin homologs PsCNA1/PsCNB1 in Puccinia striiformis f. sp. tritici using a host–induced RNAi system. PLoS One, 7, e49262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Hou, D. X., Chen, X., Li, D. H., Zhu, L. Y., & Zhang, Y. J. (2012b). Exogenous plant MIRI68a specifically targets mammalian LDLRAP1: Evidence of cross–kingdom regulation by microRNA. Cell Research, 22, 107–126.

    Article  CAS  PubMed  Google Scholar 

  • Zongli, H., Urvi, P., Natsumi, M., Yuri, T., & Jose, R. B. (2015). Down regulation of Fusarium oxysporum endogenous genes by host–delivered RNA interference enhances disease resistance. Frontiers in Chemistry, 3, 1–10.

    Google Scholar 

  • Zrachya, A., Kumar, P. P., Ramakrishan, U., Levy, Y., Loyter, A., Arazi, T., et al. (2007). Production of siRNA targettance to the virus against TYlC coat protein transcripts lead to silencing expression and resistance in virus. Transgenic Research, 16, 385–398.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puyam, A., Kaur, K. (2020). Exploiting RNA Interference Mechanism in Plants for Disease Resistance. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_10

Download citation

Publish with us

Policies and ethics