Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP,volume 13))

Abstract

Plants are continuously exposed to certain biotic and a biotic stresses, causing serious crop losses every year. Prevailing situation is representing today a serious threat to global food security and safety. Any professional plant pathologist needs to have theoretical as well as practical knowledge and aclear understanding of plant diseases and of the factors involved, knowing how to discover effective control means. This chapter has been designed to provide the reader a brief overview regarding the concept of plant diseases, their diagnosis and the threats they pose to crop production and protection. Here we discuss and focus on basic principles including: plant disease management, conventional and advanced methods of controlling diseases and integration of various control measures, historical perspectives, disease management in the current era, future directions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios, G. N. (2005). Introduction to plant pathology. New York: Elsevier Academic Press Publication.

    Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (1995). Fungicide resistance in crop pathogens: How can it be managed. FRAC Monograph No. 1 (2nd, Rev. ed.). Fungicide Resistance Action Committee. Monograph 1 GCPF, FRAC, Brussels, pp. 1–48.

    Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance in crop pathogens: How can it be managed? (2nd Rev. ed.) Online. Fungicide Resistance Action Committee (FRAC). CropLife International, Brussels, Belgium.

    Google Scholar 

  • Brown, L. R. (2011). World on the edge. How to prevent environmental and economic collapse. New York/London: W. W. Norton Company.

    Google Scholar 

  • Carr, J. F., Gregory, S. T., & Dahlberg, A. E. (2005). Severity of the streptomycin resistance and streptomycin dependence phenotypes of ribosomal protein S12 of Thermus thermophilus depends on the identity of highly conserved amino acid residues. Journal of Bacteriology, 187, 3548–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S. K., Edwards, C. A., & Subler, S. (2001). Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biology and Biochemistry, 33, 1971–1980.

    Article  CAS  Google Scholar 

  • Clapp, J. (2014). Food security and food sovereignty: Getting past the binary. Dialogues in Human Geography, 4, 206–211.

    Article  Google Scholar 

  • Coelho, L., Chellemi, D. O., & Mitchell, D. J. (1999). Efficacy of solarization and cabbage amendment for the control of Phytophthora spp. in North Florida. Plant Disease, 83, 293–299.

    Article  CAS  PubMed  Google Scholar 

  • De Waard, M. A., Georgopoulos, S., Hollomon, G. D. W., Ishii, H., Leroux, P., Ragsdale, N. N., & Schwinn, F. J. (1993). Chemical control of plant diseases: Problems and prospects. Annual Review of Phytopathology, 31, 403–421.

    Article  Google Scholar 

  • Du Toit, L. J., & Hernandez-Perez, P. (2005). Efficacy of hot water and chlorine for eradication of Cladosporium variable, Stemphylium botryosum, and Verticillium dahliae from spinach seed. Plant Disease, 89, 1305–1312.

    Article  PubMed  Google Scholar 

  • Evans, L. T. (1998). Feeding the ten billion. Plants and population growth. Cambridge: Cambridge University Press.

    Google Scholar 

  • FAO. (2010). http://faostat.fao.org

  • FAO. (2011). http://faostat.fao.org. Accessed 17 Oct 2011.

  • Fegan, R. M., Olexa, M. T., & McGovern, R. J. (2004). Protecting agriculture: The legal basis of regulatory action in Florida. Plant Disease, 88, 1040–1043.

    Article  PubMed  Google Scholar 

  • Flood, J. (2009). Coffee wilt disease. Wallingford: CAB International. 200 pp. ISBN: 978-1-84593-641-9.

    Google Scholar 

  • Flood, J. (2010). The importance of plant health to food security. Food Security, 2(3), 215–231.

    Article  Google Scholar 

  • Fry, W. E. (1982). Principles of plant disease management. London: Academic.

    Google Scholar 

  • Gupta, K., Bishop, J., Peck, A., Brown, J., Wilson, L., & Panda, D. (2004). Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin. The Biochemist, 43, 6645–6655.

    Article  CAS  Google Scholar 

  • Hague, N. G. M., & Gowen, S. R. (1987). Chemical control of nematodes. In R. H. Brown & B. R. Kerry (Eds.), Principles and practice of nematode control in crops (pp. 131–178). Sydney: Academic.

    Google Scholar 

  • Halling-Sørensen, B., Sengeløv, G., & Tjørnelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 42, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • He, D. C., Zhan, J. S., & Xie, L. H. (2016). Problems, challenges and future of plant disease management: From an ecological point of view. Journal of Integrative Agriculture, 15, 705–715.

    Article  Google Scholar 

  • Hewitt, H. G. (1998). Fungicides in crop protection. Wallingford: CAB International.

    Google Scholar 

  • Hewitt, G. New modes of action of fungicides. The Royal Society of Chemistry, 2000, 2000, 28–32.

    Article  CAS  Google Scholar 

  • Hollomon, D. W., & Chamberlain, K. (1981). Hydroxypyrimidine fungicides inhibit adenosine deaminase in barley powdery mildew. Pesticide Biochemistry and Physiology, 16(2), 158–169.

    Article  CAS  Google Scholar 

  • Ivic, D. (2010). Curative and eradicative effects of fungicides. In O. Carisee (Ed.), Fungicides (pp. 3–22). Rijeka: In Tech.

    Google Scholar 

  • Kenrick, W. (1833). The new American orchardist. Boston: Carter, Hendee Co. /Russell, Ordiorne Co.

    Google Scholar 

  • Klittich, C. J. (2008). Milestones in fungicide discovery: Chemistry that changed agriculture. Plant Health Progress, 9(1), 31.

    Article  Google Scholar 

  • Knight, S. C., Anthony, V. M., Brady, A. M., Greenland, A. J., Heaney, S. P., Murray, D. C., et al. (1997). Rationale and perspectives on the development of fungicides. Annual Review of Phytopathology, 35, 349–372.

    Article  CAS  PubMed  Google Scholar 

  • Koo, B. S., Park, H., Kalme, S., Park, H. Y., Han, J. W., Yeo, Y. S., et al. (2009). α-and β-tubulin from Phytophthora capsici KACC 40483: Molecular cloning, biochemical characterization, and antimicrotubule screening. Applied Microbiology and Biotechnology, 82, 513–524.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, J. (1881). The results of the experiments to determine the cause of beet exhaustion and to study the nature of nematodes (Vol. 3). G. Schönfeld.

    Google Scholar 

  • Leadbeater, A., & Gisi, U. (2015). Chapter 1: The challenges of chemical control of plant diseases. In Recent developments in management of plant diseases (pp. 3–18). New Delhi: Springer.

    Google Scholar 

  • Lipps, P. E. (1985). Influence of inoculum from buried and surface corn residues on the incidence and severity of corn anthracnose. Phytopathology, 75, 1212–1216.

    Article  Google Scholar 

  • Littlefield, L. J. (1981). Biology of the plant rusts: An introduction. Ames: Iowa State University Press.

    Google Scholar 

  • Lucas, J. A. (2011). Advances in plant disease and pest management. The Journal of Agricultural Science, 149(S1), 91–114.

    Article  Google Scholar 

  • Mathews, D. J. (1919). Report of the work of the W. B. Randall research assistant. Nursery and Market Garden Industry Development Society, Ltd. Experiment and Research Station, Cheshunt, Herts, UK, Annual report 5, pp. 18–21.

    Google Scholar 

  • Maude, R. B. (1996). Seedborne diseases and their control: Principles and practice. Wallingford: CAB International.

    Google Scholar 

  • Mayths, G., & Baker, E. A. (1980). An appraisal of the effectiveness of qurantine. Annual Review of Phytopathology, 18, 85–101.

    Article  Google Scholar 

  • McDougall, P. (2010). The cost of new agrochemical product discovery, development and registration in 1995, 2000 and 2005–8. Available at http://www.croplife.org/view_document.aspx?docId=2478

  • McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443–465.

    Article  CAS  PubMed  Google Scholar 

  • Milenkovski, S., Baath, E., Lindgren, P. E., & Berglund, O. (2010). Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology, 19, 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Millardet, P. M. A. (1885). (1) Traitement du mildiou et du rot. (2) Traitement du mildiou par le melange de sulphate de cuivre et dechaux. (3) Sur l’histoire du traitment du mildiou par le sulphate de cuivre. J. Agric. Prat. 2, 513–516, 707–719, 801–805; Engl. trans. by F. L. Schneiderhan in Phytopathol. Classics 3 (1933).

    Google Scholar 

  • Mueller, D., Bradley, C. A., & Nielsen, J. (2008). Field crop fungicides for the north central United States. Agricultural Experiment Station, Iowa State University.

    Google Scholar 

  • Nellemann, C., MacDevett, M. Manders, T., Eickhout, B., Svilhus, B. Prins, A. G., & Kaltenborn, B. P. (Eds.). (2009). The environmental food crisis – The environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment.

    Google Scholar 

  • Nutter, F. W., Jr., & Guan, J. (2001). Disease losses. In O. C. Maloy & T. D. Murray (Eds.), Encyclopedia of plant pathology (pp. 340–351). New York: Wiley.

    Google Scholar 

  • Nutter, F. W., Jr., & Madden, L. V. (2005). Plant disease as a possible consequence of biological attacks. In R. A. Greenfield & M. S. Bronze (Eds.), Biological terrorism (pp. 793–818). Norfolk: Horizon Scientific Press/Caister Scientific Press.

    Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Palti, J. (1981). Cultural practices and infectious crop diseases. Heidelberg/New York: Springer-Verlag Berlin.

    Book  Google Scholar 

  • Pelaez, V., da Silva, L. R., & Araújo, E. B. (2013). Regulation of pesticides: A comparative analysis. Science and Public Policy, 40, 644–656.

    Article  Google Scholar 

  • Prevost, B. (1807). Memoir on the immediate cause of caries or coal of the bles, and several. other diseases of plants, and on the condoms of caries. Paris: Bernard Quai des Augustins. [Translation by Keitt GW, 1939. Memoir on the immediate cause of bunt or smut of wheat, and of several other diseases of plants, and on preventives of bunt. Menasha, WI, USA: American Phytopathological Society, Phytopathological Classics No. 6.].

    Google Scholar 

  • Rommens, M. C., & Kishore, G. M. (2000). Exploiting the full potential of disease-resistance genes for agricultural use. Current Opinion in Biotechnology, 11, 120–125.

    Article  CAS  PubMed  Google Scholar 

  • Russell, P. E. (2005). A century of fungicide evolution. The Journal of Agricultural Science, 143, 11–25.

    Article  CAS  Google Scholar 

  • Savary, S., Teng, P. S., Willocquet, L., & Nutter, F. W., Jr. (2006). Quantification and modeling of crop losses: A review of purposes. Annual Review of Phytopathology, 44, 89–112.

    Article  CAS  PubMed  Google Scholar 

  • Schacht, H. (1859). About some enemies and diseases of the sugar beet. Journal of the Association for the Beet Sugar Industry in the Zoll, 9, 239–250.

    Google Scholar 

  • Schulthess, H. (1761). Proposal of some remedies saved by experience against the fire in the grain. Abhandl Naturf Gesell Zurich, I, 498–506.

    Google Scholar 

  • Sharvell, E. G. (1979). Plant disease control. Westport: The AVI Publishing Company.

    Google Scholar 

  • Shtienberg, D., Zilberstaine, M., Oppenheim, D., Herzog, Z., Manulis, S., Shwartz, H., & Kritzman, G. (2001). Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica, 29, 143–154.

    Article  CAS  Google Scholar 

  • Sill, W. H., Jr. (1982). Plant protection: An integrated interdisciplinary approach. Ames: The Iowa State University Press.

    Google Scholar 

  • Smil, V. (2000). Feeding the world: A challenge for the twenty-first century. Cambridge: The Massachusetts Institute of Technology Press.

    Book  Google Scholar 

  • Spencer, D. M. (1978). Powdery mildew of strawberries. In The powdery mildews (pp. 355–358). New York: Academic.

    Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. Annual Review of Phytopathology, 43, 83–116.

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter, G., Janssens, J., Opsomer, C., & Botterman, J. (1995). Inhibition of fungal disease development in plants by engineering controlled cell death. Bio/Technology, 13, 1085–1089.

    Article  CAS  Google Scholar 

  • Teng, P. S., Shane, W. W., & MacKenzie, D. R. (1984). Crop losses due to plant pathogens. Critical Reviews in Plant Sciences, 2, 21–47.

    Article  Google Scholar 

  • Tillet, M. (1755). Dissertation sur la cause qui corrompt et noircit les grans de ble dans les epis; et sur les moyens de prevenir ces accidents. Bordeaux; Engl. transl. by H. B. Humphrey in Phytopathological Classics No. 5 (1937).

    Google Scholar 

  • Van der Plank, J. E. (1963). Plant disease: Epidemics and control. New York: Academic.

    Google Scholar 

  • Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecology, 2011, 1–8.

    Article  CAS  Google Scholar 

  • Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management (p. 427). New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ul Haq, I., Ijaz, S. (2020). History and Recent Trends in Plant Disease Control: An Overview. In: Ul Haq, I., Ijaz, S. (eds) Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-35955-3_1

Download citation

Publish with us

Policies and ethics