Atomistic Modelling and Simulation of Transmission Electron Microscopy Images: Application to Intrinsic Defects of Graphene
- 141 Downloads
Abstract
The characterization of advanced materials and devices in the nanometer range requires complex tools to understand the precise links between structure and properties. This paper demonstrates that the modelling of graphene-based defects can be obtained efficiently for various atomic arrangements using the Brenner module of the SAMSON software platform. The signatures of all kinds of defects are computed in terms of energy and simulated scanning transmission electron microscopy images. The results are in good agreement with the majority of the available theoretical and experimental data. This original methodology is an excellent compromise between the speed and the precision required by the semiconductor industry and opens the possibility of realistic in-silico research conjugated to the experimental nanocharacterization of these promising materials. We propose a novel approach to compare the agreement between experiment and simulation by using the projected radial distribution function. The maximum projected Euclidian distance between the model and the experiment is always better than 100 pm.
Keywords
Atomic modelling Electron microscopy STEM Graphene Defects Microstructure Image simulation Materials Characterization AtomisticNotes
Acknowledgements
The invaluable contribution from the platform of nanocharacterization (PFNC) at MINATEC, Grenoble, France is respectfully acknowledged (https://www.minatec.org/en/). We would like to gratefully acknowledge funding from the European Research Council through the ERC Starting Grant No. 307629.
References
- 1.Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)CrossRefGoogle Scholar
- 2.Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
- 3.Lee, C., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)CrossRefGoogle Scholar
- 4.Chen, H., et al.: Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18), 3557–3561 (2008)CrossRefGoogle Scholar
- 5.Pei, Q.X., et al.: A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48(3), 898–904 (2010)CrossRefGoogle Scholar
- 6.Scarpa, F., et al.: Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6), 1–11 (2009)CrossRefGoogle Scholar
- 7.Park, S., et al.: The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon 50(12), 4573–4578 (2012)CrossRefGoogle Scholar
- 8.Lee, E., et al.: Electrical properties and photoconductivity of stacked-graphene carbon nanotubes. Adv. Mater. 22(16), 1854–1857 (2010)CrossRefGoogle Scholar
- 9.Allen, B.L., et al.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)CrossRefGoogle Scholar
- 10.Sorkin, V., Zhang, Y.W.: Graphene-based pressure nano-sensors. J. Mol. Model. 17(11), 2825–2830 (2011)CrossRefGoogle Scholar
- 11.Qureshi, A., et al.: Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam. Relat. Mater. 18(12), 1401–1420 (2009)CrossRefGoogle Scholar
- 12.Joh, H.-I., et al.: Synthesis and properties of an atomically thin carbon nanosheet similar to graphene and its promising use as an organic thin film transistor. Carbon 55, 299–304 (2013)CrossRefGoogle Scholar
- 13.Yao, J., et al.: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11(10), 1849–1852 (2009)CrossRefGoogle Scholar
- 14.Stankovich, S., et al.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)CrossRefGoogle Scholar
- 15.Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRefGoogle Scholar
- 16.Brenner, D.W.: The art and science of an analytic potential. Phys. Stat. Sol. (b) 217, 23–40 (2000)CrossRefGoogle Scholar
- 17.Brenner, D.W., et al.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mater. 14, 783–802 (2002)CrossRefGoogle Scholar
- 18.Dyson, A.J., Smith, P.V.: Extension of the Brenner empirical interatomic potential to C-Si-H systems. Surf. Sci. 355, 140–150 (1996)CrossRefGoogle Scholar
- 19.Los, J.H., Fasolino, A.: Intrinsic long-range bond-order potential for carbon: performance in Monte Carlo simulations of graphitization. Phys. Rev. B 68, 024107 (2003)CrossRefGoogle Scholar
- 20.Stuart, S.J., et al.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)CrossRefGoogle Scholar
- 21.Brenner, D.W., et al.: Simulated engineering of nanostructures. In: Fourth Foresight Conference on Molecular Nanotechnology (1996)CrossRefGoogle Scholar
- 22.Sinnott, S.B., et al.: Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315, 25–30 (1999)CrossRefGoogle Scholar
- 23.Brenner, D.W., et al.: Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene. Thin Solid Films 206, 220–223 (1991)CrossRefGoogle Scholar
- 24.Lehtinen, O., et al.: Effect of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys. Rev. B 81(15), 153401 (2010)CrossRefGoogle Scholar
- 25.Bosson, et al.: Interactive physically-based structural modeling of hydrocarbon systems. J. Comput. Phys. 231(6), 2581–2598 (2012)zbMATHCrossRefGoogle Scholar
- 26.Los, J.H., Fasolino, A.: Monte Carlo simulations of carbon-based structures based on an extended Brenner potential. Comput. Phys. Commun. 147, 178–181 (2002)zbMATHCrossRefGoogle Scholar
- 27.Redon, S., et al.: Adaptive dynamics of articulated bodies. ACM Trans. Graph. (TOG) 24(3), 936–945 (2005)CrossRefGoogle Scholar
- 28.Koch, C.: Determination of core structure periodicity and point defect density along dislocations. Ph.D. thesis, Arizona State University (2002)Google Scholar
- 29.Crewe, A.V., Wall, J., Langmore, J.: Science 168, 1338 (1970)CrossRefGoogle Scholar
- 30.Egerton, R.: Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 75(11), 1550–1556 (2012)CrossRefGoogle Scholar
- 31.Biskupek, J., et al.: Effects of residual aberrations explored on single-walled carbon nanotubes. Ultramicroscopy 116, 1–7 (2012)CrossRefGoogle Scholar
- 32.Barthel, J., Thust, A.: On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy 134, 6–17 (2013)CrossRefGoogle Scholar
- 33.Schramm, S., et al.: Intrinsic instability of aberration- corrected electron microscopes. Phys. Rev. Lett. 109(16), 163901 (2012)CrossRefGoogle Scholar
- 34.Uhlemann, S., et al.: Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett. 111, 046101 (2013)CrossRefGoogle Scholar
- 35.Lee, Z., et al.: Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images. Ultramicroscopy 145, 3–12 (2014)CrossRefGoogle Scholar
- 36.LeBeau, J.M., et al.: Phys. Rev. Lett. 100, 206101 (2008)CrossRefGoogle Scholar
- 37.LeBeau, J.M., et al.: Phys. Rev. B 79, 214110 (2009)CrossRefGoogle Scholar
- 38.Hytch, M.J., et al.: Ultramicroscopy 53, 191 (1994)CrossRefGoogle Scholar
- 39.Howie, A.: Ultramicroscopy 98, 73 (2004)CrossRefGoogle Scholar
- 40.Mkhoyan, K.A., et al.: Phys. Rev. Lett. 100, 025503 (2008)CrossRefGoogle Scholar
- 41.Boothroyd, C.B.: J. Microsc. 190, 99 (1998)CrossRefGoogle Scholar
- 42.Du, K., et al.: Ultramicroscopy 107, 281 (2007)CrossRefGoogle Scholar
- 43.Meyer, R.R., et al.: Microsc. Res. Tech. 49, 269 (2000)CrossRefGoogle Scholar
- 44.Thust, A.: Phys. Rev. Lett. 102, 220801 (2009)CrossRefGoogle Scholar
- 45.Fasolino, A., et al.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)CrossRefGoogle Scholar
- 46.Banhart, F., et al.: Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181 (1999)CrossRefGoogle Scholar
- 47.Smith, B.W., et al.: Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001)CrossRefGoogle Scholar
- 48.Schindelin, et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676 (2012)CrossRefGoogle Scholar
- 49.Stone, A.J., et al.: Theoretical Studies of Icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)CrossRefGoogle Scholar
- 50.Pauling, L.: The Nature of the Chemical Bond. Cornell University Press, Ithaca (1960)zbMATHGoogle Scholar
- 51.Meyer, J.C., et al.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008)CrossRefGoogle Scholar
- 52.Kotakoski, J., et al.: From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 106, 105505 (2011)CrossRefGoogle Scholar
- 53.Kotakoski, J., et al.: Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Phys. Rev. B 83, 245420 (2011)CrossRefGoogle Scholar
- 54.Li, L., et al.: Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 184109 (2005)CrossRefGoogle Scholar
- 55.Ma, J., et al.: Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 80, 033407 (2009)CrossRefGoogle Scholar
- 56.Jensen, P., et al.: Catalysis of nanotube plasticity under tensile strain. Phys. Rev. B 66, 193403 (2002)CrossRefGoogle Scholar
- 57.Zhang, W., et al.: Tight-binding calculation studies of vacancy and adatom defects in graphene. J. Phys. Condens. Matter 28, 115001 (2016)CrossRefGoogle Scholar
- 58.Trevethan, T., et al.: Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale 6, 2978–2986 (2014)CrossRefGoogle Scholar
- 59.Skowron, S., et al.: Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143 (2015)CrossRefGoogle Scholar
- 60.Gass, M.H., et al.: Free-Standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008)CrossRefGoogle Scholar
- 61.Girit, Ç.Ö., et al.: Graphene at the edge: stability and dynamics. Science 27 323(5922), 1705–1708 (2009)CrossRefGoogle Scholar
- 62.El-Barbary, A.A., et al.: Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003)CrossRefGoogle Scholar
- 63.Robertson, A.W., Warner, J.H.: Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale 5, 4079–4093 (2013)CrossRefGoogle Scholar
- 64.Salve (2018). http://www.salve-project.de/home.html
- 65.Lehtinen, O., et al.: Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat. Commun. 4, 3098 (2013)CrossRefGoogle Scholar
- 66.Ramasse, Q.M., et al.: Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995 (2013)CrossRefGoogle Scholar
- 67.Warner, J.H., et al.: Dislocation-driven deformations in graphene. Science 337, 209 (2012)CrossRefGoogle Scholar
- 68.Saito, M., et al.: Magic numbers of graphene multivacancies. Jpn. J. Appl. Phys. 46(12L), L1185 (2007)CrossRefGoogle Scholar
- 69.Xu, C.H., et al.: Simulations of point-defect properties in graphite by a tight-binding-force model. Phys. Rev. B. 48(18), 13273 (1993)CrossRefGoogle Scholar
- 70.Dettori, R., et al.: Elastic fields and moduli in defected graphene. J. Phys. Condens. Matter 24, 104020 (2012)CrossRefGoogle Scholar
- 71.Robertson, A.W., et al.: Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144–1151 (2012)CrossRefGoogle Scholar
- 72.Wu, L., et al.: First-principles study on migration and coalescence of point defects in monolayer graphene. J. Phys. Chem. C 117, 17066–17072 (2013)CrossRefGoogle Scholar
- 73.Song, B., et al.: Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011)CrossRefGoogle Scholar
- 74.Tsetserisa, L., Pantelides, S.T.: Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes. Carbon 47, 901–908 (2009)CrossRefGoogle Scholar
- 75.Hashimoto, A., et al.: Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). https://doi.org/10.1038/nature02817CrossRefGoogle Scholar
- 76.Bangert, U., et al.: Nanotopography of graphene. Phys. Status Solidi A 206, 2115–2119 (2009)CrossRefGoogle Scholar
- 77.Lee, Y.H., et al.: Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett. 78, 2393–2396 (1997)CrossRefGoogle Scholar
- 78.Lehtinen, O., et al.: Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 91, 017202 (2003)CrossRefGoogle Scholar
- 79.Crespi, V.H., et al.: Prediction of a pure-carbon planar covalent metal. Phys. Rev. B 53, R13303(R) (1996)CrossRefGoogle Scholar