Skip to main content

Machine Learning Principles

  • Chapter
  • First Online:
Data Intensive Industrial Asset Management

Abstract

Machine learning (ML) algorithms seek to extract the most beneficial information out of the raw data. As mentioned in previous chapters, preprocess data preparation actions might be needed in order to make the data set ready to be fed into the ML algorithms. ML algorithms have gotten the attention of researchers all over the world during the last few decades. In traditional algorithms, the analyst had to define the rules, which was not always accessible or easily possible, in order to obtain the output. ML algorithms develop the models or rules based on the training data set which include input and output data points. ML algorithms try to understand more beneficial information regarding the system based on the training data set. The built model can be tested using the verification data set which does not have any overlap with the training sets. If the model acquires the acceptable performance measures, it can be applied for other cases to perform the prediction process. It should be considered that ML algorithms are not supposed to do the magic. Indeed, they are supposed to explore and analyze the training data, which the human brain is not able to handle that, to develop a predictive model in which its performance is acceptable for the verification data set. Predictive models should be generalized which means performing satisfactorily for both training and verifying data sets.

The main purpose of this chapter is to present the most commonly used statistical and ML algorithms more toward the application side rather than the theories behind the development of the algorithms. Therefore, this chapter of the book is summarizing the most important applications and features of the ML algorithms. It should be noted that the term “machine learning (ML)” is not interchangeable with “artificial intelligence (AI).” Indeed, ML is a subfield of the AI which sometimes referred to as “predictive modeling” or “predictive algorithms.” One of the most famous theorems in ML area is called “no free lunch.” This theorem indicates that there is not an algorithm which can globally perform better than others for all the applications. Based on this theorem, an analyst should have advanced knowledge regarding the ability of the algorithms in order to select the most applicable one.

In this chapter, several commonly used supervised ML algorithms are presented in detail. In general, supervised algorithms are categorized into either regression or classification tasks. For each of the prediction task, the theories behind a few ML algorithms are explained. A few examples of the algorithm selection criteria are also discussed in this chapter. A numerical example is also presented for regression and classification tasks in order to explain the performance of the various algorithms given the same data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine Learning Neural and Statistical Classification, vol 13 (1994)

    Google Scholar 

  2. I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, Amsterdam, 2016)

    Google Scholar 

  3. E. Alpaydin, Introduction to Machine Learning (MIT press, 2009)

    Google Scholar 

  4. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, MA, 2012)

    MATH  Google Scholar 

  5. S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: A review of classification techniques, in Emerging Artificial Intelligence Applications in Computer Engineering, vol. 160, (2007), pp. 3–24

    Google Scholar 

  6. L. Bottou, Large-scale machine learning with stochastic gradient descent, pp. 177–186, 2010

    Chapter  Google Scholar 

  7. P.M. Domingos, A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012)

    Article  Google Scholar 

  8. P. Baldi, S. Brunak, F. Bach, Bioinformatics: the Machine Learning Approach (MIT press, 2001)

    Google Scholar 

  9. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning (MIT Press, Cambridge, MA, 2018)

    MATH  Google Scholar 

  10. T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, A. Waibel, Machine learning. Annu. Rev. Comput. Sci 4(1), 417–433 (1990)

    Article  Google Scholar 

  11. E. Alpaydin, Introduction to Machine Learning (MIT press, 2014)

    Google Scholar 

  12. S. Marsland, Machine Learning: An Algorithmic Perspective (Chapman and Hall/CRC, 2014)

    Google Scholar 

  13. M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Trans. Neural Netw. 20(3), 542 (2009)

    Article  Google Scholar 

  15. T. Hofmann, Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn 42(1-2), 177–196 (2001)

    Article  MATH  Google Scholar 

  16. R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, vol 135 (1998)

    MATH  Google Scholar 

  17. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, MA, 2018)

    MATH  Google Scholar 

  18. G.A. Seber, A.J. Lee, Linear Regression Analysis, vol 329 (Wiley, New York, 2012)

    MATH  Google Scholar 

  19. D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression Analysis, vol 821 (John Wiley & Sons, 2012)

    Google Scholar 

  20. S. Weisberg, Applied Linear Regression, vol 528 (John Wiley & Sons, 2005)

    Google Scholar 

  21. J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman, Applied Linear Statistical Models, vol 4 (Irwin, Chicago, 1996)

    Google Scholar 

  22. M.L. King, Testing for autocorrelation in linear regression models: A survey, in Specification Analysis in the Linear Model, (Routledge, 2018), pp. 19–73

    Google Scholar 

  23. C.B. Santiago, J. Guo, M.S. Sigman, Predictive and mechanistic multivariate linear regression models for reaction development. Chem. Sci. 9(9), 2398–2412 (2018)

    Article  Google Scholar 

  24. A.F. Schmidt, C. Finan, Linear regression and the normality assumption. J. Clin. Epidemiol. 98, 146–151 (2018)

    Article  Google Scholar 

  25. D.W. Hosmer Jr., S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression, vol 398 (John Wiley & Sons, 2013)

    Google Scholar 

  26. P.D. Allison, Logistic Regression Using SAS: Theory and Application (SAS Institute, 2012)

    Google Scholar 

  27. S. Menard, S.W. Menard, Logistic Regression: From Introductory to Advanced Concepts and Applications (SAGE, Los Angeles, 2010)

    Book  MATH  Google Scholar 

  28. J.J. Arsanjani, M. Helbich, W. Kainz, A.D. Boloorani, Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 21, 265–275 (2013)

    Article  Google Scholar 

  29. J.C. Stoltzfus, Logistic regression: A brief primer. Acad. Emerg. Med. 18(10), 1099–1104 (2011)

    Article  Google Scholar 

  30. J. Starkweather, A.K. Moske, Multinomial logistic regression, Consulted page at September 10th: http://www.unt.edu/rss/class/Jon/Benchmarks/MLR_JDS_Aug2011.pdf, vol. 29, pp. 2825–2830

  31. S. Sperandei, Understanding logistic regression analysis. Biochem. Med 24(1), 12–18 (2014)

    Article  Google Scholar 

  32. P.D. Allison, Measures of fit for logistic regression, 1–13

    Google Scholar 

  33. S. Menard, Standards for standardized logistic regression coefficients. Soc. Forces 89(4), 1409–1428 (2011)

    Article  Google Scholar 

  34. Y. Freund, L. Mason, The alternating decision tree learning algorithm, vol. 99, pp. 124–133

    Google Scholar 

  35. M.A. Friedl, C.E. Brodley, Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3), 399–409 (1997)

    Article  Google Scholar 

  36. T.K. Ho, Random decision forests, vol. 1, pp. 278–282

    Google Scholar 

  37. P.E. Utgoff, N.C. Berkman, J.A. Clouse, Decision tree induction based on efficient tree restructuring. Mach. Learn 29(1), 5–44 (1997)

    Article  MATH  Google Scholar 

  38. J.R. Quinlan, Induction of decision trees. Mach. Learning 1(1), 81–106 (1986)

    Google Scholar 

  39. M. Mehta, J. Rissanen, R. Agrawal, MDL-based decision tree pruning, vol. 21, no. 2, pp. 216–221

    Google Scholar 

  40. R.E. Banfield, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer, A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 173–180 (2007)

    Article  Google Scholar 

  41. D. Meyer, F.T. Wien, Support vector machines, The Interface to libsvm in package e1071, pp. 28

    Google Scholar 

  42. T. Harris, Credit scoring using the clustered support vector machine. Expert Syst. Appl. 42(2), 741–750 (2015)

    Article  Google Scholar 

  43. B. Gu, V.S. Sheng, A robust regularization path algorithm for $\nu $-support vector classification. IEEE Trans. Neural Netw. Learn. Syst 28(5), 1241–1248 (2017)

    Article  Google Scholar 

  44. S. Suthaharan, Support vector machine, pp. 207–235

    Chapter  MATH  Google Scholar 

  45. T.R. Patil, S.S. Sherekar, Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013)

    Google Scholar 

  46. I. Rish, An empirical study of the naive Bayes classifier, vol. 3, no. 22, pp. 41–46

    Google Scholar 

  47. A. McCallum, K. Nigam, A comparison of event models for naive bayes text classification, vol. 752, no. 1, pp. 41–48

    Google Scholar 

  48. G. Ridgeway, D. Madigan, T. Richardson, J. O'Kane, Interpretable boosted Naïve Bayes classification, pp. 101–104

    Google Scholar 

  49. H. Zhang, The optimality of naive Bayes. AA 1(2), 3 (2004)

    Google Scholar 

  50. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  51. J.M. Zurada, Introduction to Artificial Neural Systems, vol 8 (West publishing company, St. Paul, 1992)

    Google Scholar 

  52. W.S. Sarle, Neural networks and statistical models (1994)

    Google Scholar 

  53. M.H. Hassoun, Fundamentals of Artificial Neural Networks (MIT press, 1995)

    Google Scholar 

  54. S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (2016)

    MATH  Google Scholar 

  55. M. van Gerven, S. Bohte, Artificial Neural Networks as Models of Neural Information Processing (2018)

    Book  Google Scholar 

  56. P. Bangalore, L.B. Tjernberg, An artificial neural network approach for early fault detection of gearbox bearings. IEEE Trans. Smart Grid 6(2), 980–987 (2015)

    Article  Google Scholar 

  57. S. Shanmuganathan, Artificial neural network modelling: An introduction, in Artificial Neural Network Modelling, (Springer, Cham, 2016), pp. 1–14

    Chapter  Google Scholar 

  58. G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury, Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29, 82 (2012)

    Article  Google Scholar 

  59. Z. Cai, Q. Fan, R.S. Feris, N. Vasconcelos, A unified multi-scale deep convolutional neural network for fast object detection, pp. 354–370

    Google Scholar 

  60. T. Do, A. Doan, N. Cheung, Learning to hash with binary deep neural network, pp. 219–234

    Chapter  Google Scholar 

  61. M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, pp. 2014–2023

    Google Scholar 

  62. O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, D. Yu, Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

    Article  Google Scholar 

  63. N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classification Perspective (Cambridge University Press, 2011)

    Google Scholar 

  64. S. Sra, S. Nowozin, S. J. Wright (eds.), Optimization for Machine Learning (MIT Press, 2012)

    Google Scholar 

  65. H.G. Schaathun, Machine Learning in Image Steganalysis (Wiley, Norway, 2012)

    Book  Google Scholar 

  66. C. Zhang, Y. Ma (eds.), Ensemble Machine Learning: Methods and Applications (Springer, 2012)

    Google Scholar 

  67. R. Bekkerman, M. Bilenko, J. Langford (eds.), Scaling Up Machine Learning: Parallel and Distributed Approaches (Cambridge University Press, 2011)

    Google Scholar 

  68. G. Valentini, F. Masulli, Ensembles of learning machines, in Italian Workshop on Neural Nets, (Springer, Berlin, Heidelberg, 2002)

    Chapter  MATH  Google Scholar 

  69. A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, M. Figari, Machine learning approaches for improving condition? based maintenance of naval propulsion plants. J. Eng. Mar. Environ 230, 136 (2014)

    Google Scholar 

  70. Center for Machine Learning and Intelligent Systems UCI Machine Learning Repository, Condition based maintenance of naval propulsion plants data set

    Google Scholar 

  71. UCI Machine Learning Repository Center for Machine Learning and Intelligent Systems, Electrical grid stability simulated data data set, November

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balali, F., Nouri, J., Nasiri, A., Zhao, T. (2020). Machine Learning Principles. In: Data Intensive Industrial Asset Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35930-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35930-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35929-4

  • Online ISBN: 978-3-030-35930-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics