Skip to main content

A Few Negative Results on Constructions of MDS Matrices Using Low XOR Matrices

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11947))

Abstract

This paper studies some low XOR matrices systematically. Some known low XOR matrices are companion, DSI and sparse DSI matrices. Companion matrices have been well studied now whereas DSI and sparse DSI are newly proposed matrices. There are very few results on these matrices. This paper presents some new mathematical results and rediscovers some existing results on DSI and sparse DSI matrices. Furthermore, we start from a matrix with the minimum number of fixed XORs required, which is one, to construct any recursive MDS matrix. We call such matrices 1-XOR matrices. No family of low XOR matrices can have lesser fixed XORs than 1-XOR matrices. We then move on to 2-XOR and provide some impossibility results for matrices of order 5 and 6 to compute recursive MDS matrices. Finally, this paper shows the non-existence of 8-MDS sparse DSI matrix of order 8 over the field \(\mathbb {F}_{2^8}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_1. http://eprint.iacr.org/2014/566.pdf

    Chapter  Google Scholar 

  2. Berger, T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_18

    Chapter  Google Scholar 

  3. Gupta, K.C., Ray, I.G.: On constructions of involutory MDS matrices. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 43–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_3

    Chapter  Google Scholar 

  4. Gupta, K.C., Ray, I.G.: Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptogr. Commun. 7, 257–287 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: Towards a general construction of recursive MDS diffusion layers. Des. Codes Cryptogr. 82, 179–195 (2017)

    Article  MathSciNet  Google Scholar 

  6. Gupta, K.C., Pandey, S.K., Ray, I.G., Samanta, S.: Cryptographically significant MDS matrices over finite fields: a brief survey and some generalized results. Adv. Math. Commun. 13(4), 779–843 (2019)

    Article  MathSciNet  Google Scholar 

  7. Lacan, J., Fimes, J.: Systematic MDS erasure codes based on vandermonde matrices. IEEE Trans. Commun. Lett. 8, 570–572 (2004)

    Article  Google Scholar 

  8. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_6

    Chapter  Google Scholar 

  9. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1986)

    MATH  Google Scholar 

  10. Pehlivanoǧlu, M.K., Sakalli, M.T., Akleylek, S., Duru, N., Rijmen, V.: Generalisation of Hadamard matrix to generate involutory MDS matrices for lightweight cryptography. IET Inf. Secur. 12, 348–355 (2018)

    Article  Google Scholar 

  11. Sajadieh, M., Dakhilalian, M., Mala, H., Omoomi, B.: On construction of involutory MDS matrices from Vandermonde Matrices in \(GF(2^q)\). Des. Codes Cryptogr. 64, 287–308 (2012)

    Article  MathSciNet  Google Scholar 

  12. Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of Toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016, 95–113 (2016)

    Google Scholar 

  13. Sarkar, S., Syed, H.: Analysis of Toeplitz MDS matrices. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_1

    Chapter  Google Scholar 

  14. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_23

    Chapter  Google Scholar 

  15. Toh, D., Teo, J., Khoo, K., Sim, S.M.: Lightweight MDS serial-type matrices with minimal fixed XOR count. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 51–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_4

    Chapter  Google Scholar 

Download references

Acknowledgments

We are thankful to the anonymous reviewers for their valuable comments. We also wish to thank Prof. Rana Barua for providing several useful and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, K.C., Pandey, S.K., Samanta, S. (2019). A Few Negative Results on Constructions of MDS Matrices Using Low XOR Matrices. In: Bhasin, S., Mendelson, A., Nandi, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2019. Lecture Notes in Computer Science(), vol 11947. Springer, Cham. https://doi.org/10.1007/978-3-030-35869-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35869-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35868-6

  • Online ISBN: 978-3-030-35869-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics