Skip to main content

Fractals: Dynamics in the Geometry

  • Chapter
  • First Online:
Dynamics with Chaos and Fractals

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 29))

  • 1079 Accesses

Abstract

In this chapter, dynamics are constructed for fractals utilizing the motion associated with differential equations. Firstly, we introduce an algorithm to map fractals by developing a mapping iteration on the basis of Fatou–Julia iteration. Because of the close link between mappings, differential equations, and dynamical systems, one can introduce dynamics for a fractal through differential equations such that it becomes points of the solution trajectory. In the present chapter, Julia set, Mandelbrot set, and Sierpinski fractals are considered as initial points for the trajectories of the dynamics. The characterization of fractals as trajectory points of the dynamics can help to enhance and widen the scope of their applications in physics and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.V. Ahlfors, Lectures on Quasiconformal Mappings, 2nd edn. (Amer. Math. Soc., Providence, RI, 2006)

    MATH  Google Scholar 

  2. M. Akhmet, M.O. Fen, E.M. Alejaily, Dynamics with fractals. Discontinuity Nonlinearity Complexity (in press)

    Google Scholar 

  3. M. Akhmet, M.O. Fen, E.M. Alejaily, Mapping Fatou-Julia Iterations. Proc. ICIME 2018, 64–67 (2018)

    Google Scholar 

  4. M. Akhmet, M.O. Fen, E.M. Alejaily, Generation of fractals as Duffing equation orbits. Chaos 29, 053113 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bak, S.P. Kim, S.K. Kim, K-S. Soh, J.H. Yee, Fractal Diffraction Grating. ArXiv Physics e-prints, arXiv:physics/9802007

    Google Scholar 

  6. M.F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 399, 243–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.F. Barnsley, Fractals Everywhere (Academic Press, London, 1988)

    MATH  Google Scholar 

  9. M.F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. Ser. A 399, 243–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. F.M. Borodich, A.Y. Volovikov, Surface integrals for domains with fractal boundaries and some applications to elasticity. Proc. R. Soc. Ser. A 456, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Casanova, J.B. Florindo, M. Falvo, O.M. Bruno, Texture analysis using fractal descriptors estimated by the mutual interference of color channels. Inf. Sci. 346–347, 58–72 (2016)

    Article  Google Scholar 

  12. C. Cattani, Fractals and hidden symmetries in DNA. Math. Prob. Eng. 2010, 1–31 (2010)

    MathSciNet  MATH  Google Scholar 

  13. W.O. Cochran, J.C. Hart, P.J. Flynn, On approximating rough curves with fractal functions. Proc. Graphics Interface 1, 65–72 (1998)

    Google Scholar 

  14. Y. Dong, M. Dai, D. Ye, Non-homogeneous fractal hierarchical weighted networks. Plos One. 10, e0121946 (2015)

    Article  Google Scholar 

  15. J. Encarnacao, H-O. Peitgen, G. Saka, G. Englert, Fractal Geometry and Computer Graphics (Springer, Berlin, 1992)

    Book  Google Scholar 

  16. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. (Wiley, Chichester, 2003)

    Book  MATH  Google Scholar 

  17. P. Fatou, Sur les équations fonctionnelles, I, II, III. Bull. Soc. Math. France 47, 161–271 (1919); 48, 33–94 (1920); 48, 208–314 (1920)

    Google Scholar 

  18. D.P. Feldman, Chaos and Fractals: An Elementary Introduction (Oxford University Press, UK, 2012)

    Book  MATH  Google Scholar 

  19. G. Franceschetti, A. Iodice, D. Riccio, G. Ruello, Fractal surfaces and electromagnetic extended boundary conditions. IEEE Trans. Geoscience Remote Sensing 40, 1018–1031 (2002)

    Article  Google Scholar 

  20. P. Frankhauser, Fractals geometry of urban patterns and their morphogenesis. Discrete Dyn. Nat. Soc. 2, 127–145 (1998)

    Article  Google Scholar 

  21. J. Guckenheimer, J. Moser, S.E. Newhouse, Dynamical Systems (Birkhäuser, Boston, 1980)

    MATH  Google Scholar 

  22. J. Hutchinson, Fractals and self-similarity. Indiana Univ. J. Math. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Jonsson, H. Wallin, Boundary value problems and Brownian motion on fractals. Chaos Solitons Fractals 8, 191–205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Julia, Mémoire suv I’itération des fonctions rationelles. J. Math. Pures Appl. 8, 47–245 (1918)

    Google Scholar 

  25. A. Kansal, J. Kaur, Sierpinski gasket fractal array antenna. IJCSC 1, 133–136 (2010)

    Google Scholar 

  26. D. Rayneau-Kirkhope, Y. Mao, R. Farr, Optimization of fractal space frames under gentle compressive load. Phys. Rev. E 87, 063204 (2013)

    Article  Google Scholar 

  27. J.J. Kozak, V. Balakrishnan, Analytic expression for the mean time to absorption for a random walker on the Sierpinski gasket. Phys. Rev. E 65, 021105 (2002)

    Article  MathSciNet  Google Scholar 

  28. S. Liu, H. Dong, W. Zhao, Optimization model based on the fractal theory in supply chain management. Adv. Mat. Res. 694–697, 3554–3557 (2013)

    Google Scholar 

  29. X.Y. Liu, P.D. Sawant, Determination of the fractal characteristic of nanofiber-network formation in supramolecular materials. Chem. Phys. Chem. 4, 374–377 (2002)

    Article  Google Scholar 

  30. D.C. Luor, Fractal interpolation functions with partial self similarity. J. Math. Anal. Appl. 464, 911–923 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. B.B. Mandelbrot, Les Objets Fractals: Forme, Hasard, et Dimension (Flammarion, Paris, 1975)

    MATH  Google Scholar 

  32. B.B. Mandelbrot, Fractals and Chaos: The Mandelbrot Set and Beyond (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  33. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Curve fitting by fractal interpolation, in Transactions on Computational Science I. Lecture Notes in Computer Science, vol. 4750, ed. by M. L. Gavrilova, C. Tan (Springer, Berlin, Heidelberg, 2008), pp. 85–103

    Google Scholar 

  34. P. Manousopoulos, V. Drakopoulos, T. Theoharis, Parameter identification of 1d recurrent fractal interpolation functions with applications to imaging and signal processing. J. Math. Imaging Vision 40, 162–170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets (Academic Press, San Diego, 1994)

    MATH  Google Scholar 

  36. P. Massopust, Fractal functions and their applications. Chaos Solitons Fractals 8, 171–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. D.S. Mazel, Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Process 42, 3269–3271 (1994)

    Article  Google Scholar 

  38. R. Noorani, 3D Printing: Technology, Applications, and Selection (CRC Press, New York, 2017)

    Book  Google Scholar 

  39. L. Nottale, Fractal Space-Time and Microphysics Towards a Theory of Scale Relativity (World Scientific, Singapore, 1993)

    Book  MATH  Google Scholar 

  40. L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach 315 in Unifying Relativity and Quantum Mechanics (Imperial College Press, London, 2011)

    Book  MATH  Google Scholar 

  41. A.P. Pancheha, A.A. Puzenko, S.A. Puzenko, Boundary conditions for the electromagnetic field on a non-differentiable fractal surface. Phys. Lett. A 182, 407–410 (1993)

    Article  Google Scholar 

  42. H-O. Peitgen, D. Saupe (eds.), The Science of Fractal Images (Springer, New York, 1988)

    Google Scholar 

  43. J.A. Riera, Relaxation of hierarchical models defined on Sierpinski gasket fractals. J. Phys. A Math. Gen. 19, L869–L873 (1986)

    Article  MathSciNet  Google Scholar 

  44. M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. Math. 147, 225–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. K.J. Smith, The Nature of Mathematics, 13th edn. (Cengage Learning, Boston, 2017)

    Google Scholar 

  46. D. Triantakonstantis, Urban growth prediction modelling using fractals and theory of chaos. Open J. Civil Eng. 2, 81–86 (2012)

    Article  Google Scholar 

  47. J.L. Véhel, E. Lutton, C. Tricot (Eds.), Fractals in Engineering: From Theory to Industrial Applications (Springer, New York, 1997)

    Google Scholar 

  48. S. Wiggins, Global Bifurcation and Chaos: Analytical Methods (Springer, New York, Berlin, 1988)

    Book  MATH  Google Scholar 

  49. G.W. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach (Prentice-Hall, Upper Saddle River, NJ, 1996)

    Google Scholar 

  50. Z. Xu, S. Xiao, Fractal dimension of surface ENG and its determinants, in The 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 1570–1573 (1997)

    Google Scholar 

  51. M.Y. Zhai, J.L. Fernández-Martínez, J.W. Rector, A new fractal interpolation algorithm and its applications to self-affine signal reconstruction. Fractals 19, 355–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Z. Zhang, Y. Li, S. Gao, S. Zhou, J. Guan, M. Li, Trapping in scale-free networks with hierarchical organization of modularity. Phys. Rev. E 80, 051120 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhmet, M., Fen, M.O., Alejaily, E.M. (2020). Fractals: Dynamics in the Geometry. In: Dynamics with Chaos and Fractals. Nonlinear Systems and Complexity, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-35854-9_11

Download citation

Publish with us

Policies and ethics