Skip to main content

Bioresource-Derived Graphene Quantum Dots: A Tale of Sustainable Materials and Their Applications

  • Chapter
  • First Online:
Quantum Dot Optoelectronic Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 27))

Abstract

Carbon is an elite element when coming to the material research field [1]. Carbon has delivered numerous useful nanostructures including carbon nanotube [2], graphene, etc. [3]. The history of carbon nanomaterials began with the synthesis of graphene oxide from graphite, and it was named as ‘graphon’ in the older time [4]. Then a large number modified synthetic procedures were developed for the production of graphene oxide in bulk quantity [5]. Along with these developments, the invention of fullerene, an important allotrope of carbon, occurred [6], and it was followed by the discovery of one-dimensional carbon nanotubes [7]. At the same time, the existence of single sheet of graphite was a hot topic of debate, and its existence was only theoretical until in 2011 the monolayer graphene through scotch-tape technique was synthesized [8]. The other important carbon nanomaterials invented include nano-horns [9], nano-onions [10], etc. Thus, the carbon nanomaterial family included members in various dimensions ranging from zero to three.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. dos Santos, M. C., Maynart, M. C., et al. (2017). Carbon-based materials: Recent advances, challenges, and perspectives. Reference module in materials science and materials engineering. Elsevier.

    Google Scholar 

  2. Schnorr, J. M., & Swager, T. M. (2011). Emerging applications of carbon nanotubes. Chemistry of Materials, 23(3), 646–657.

    Article  CAS  Google Scholar 

  3. Mohan, V. B., Lau, K.-t., et al. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220.

    Article  CAS  Google Scholar 

  4. Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249–259.

    Article  Google Scholar 

  5. Chen, D., Feng, H., et al. (2012). Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews, 112(11), 6027–6053.

    Article  CAS  Google Scholar 

  6. Kroto, H., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1987). Long Carbon Chain molecules in circular stellar shells, The Astrophysical Journal, 314, 352–355.

    Google Scholar 

  7. Lijima, S. (1991). Helical microtubes of graphitic carbon. Nature, 354, 56–58.

    Article  Google Scholar 

  8. Novoselov, K. S., Geim, A. K., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Article  CAS  Google Scholar 

  9. Karousis, N., Suarez-Martinez, I., et al. (2016). Structure, properties, functionalization, and applications of carbon Nanohorns. Chemical Reviews, 116(8), 4850–4883.

    Article  CAS  Google Scholar 

  10. Mykhailiv, O., Zubyk, H., et al. (2017). Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chimica Acta, 468, 49–66.

    Article  CAS  Google Scholar 

  11. Xu, X., Ray, R., et al. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737.

    Article  CAS  Google Scholar 

  12. Ponomarenko, L., Schedin, F., et al. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320(5874), 356–358.

    Article  CAS  Google Scholar 

  13. Tian, P., Tang, L., et al. (2018). Graphene quantum dots from chemistry to applications. Materials Today Chemistry, 10, 221–258.

    Article  CAS  Google Scholar 

  14. Li, L.-s., & Yan, X. (2010). Colloidal graphene quantum dots. The Journal of Physical Chemistry Letters, 1(17), 2572–2576.

    Article  CAS  Google Scholar 

  15. Zhu, S., Zhang, J., et al. (2011). Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 47(24), 6858–6860.

    Article  CAS  Google Scholar 

  16. Tan, X., Li, Y., et al. (2015). Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chemical Communications, 51(13), 2544–2546.

    Article  CAS  Google Scholar 

  17. Tang, L., Ji, R., et al. (2012). Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 6(6), 5102–5110.

    Article  CAS  Google Scholar 

  18. Eda, G., Lin, Y. Y., et al. (2010). Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 22(4), 505–509.

    Article  CAS  Google Scholar 

  19. Van Tam, T., Kang, S. G., et al. (2017). Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 5(21), 10537–10543.

    Article  Google Scholar 

  20. Tayyebi, A., Akhavan, O., et al. (2018). Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues. Carbon, 130, 267–272.

    Article  CAS  Google Scholar 

  21. Shen, J., Zhu, Y., et al. (2011). Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications, 47(9), 2580–2582.

    Article  CAS  Google Scholar 

  22. Kwon, W., Kim, Y.-H., et al. (2014). Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Letters, 14(3), 1306–1311.

    Article  CAS  Google Scholar 

  23. Luo, P., Ji, Z., et al. (2013). Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance. Nanoscale, 5(16), 7361–7367.

    Article  CAS  Google Scholar 

  24. Zhu, S., Zhang, J., et al. (2012). Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Advanced Functional Materials, 22, 4732–4740.

    Article  CAS  Google Scholar 

  25. Wang, Z., Yu, J., et al. (2016b). Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: A comprehensive utilization strategy. ACS Applied Materials & Interfaces, 8(2), 1434–1439.

    Article  CAS  Google Scholar 

  26. Kundu, S., Yadav, R. M., et al. (2015). Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale, 7(27), 11515–11519.

    Article  CAS  Google Scholar 

  27. Dhar, S., Majumder, T., et al. (2017). Phenomenal improvement of external quantum efficiency, detectivity and responsivity of nitrogen doped graphene quantum dot decorated zinc oxide nanorod/polymer schottky junction UV detector. Materials Research Bulletin, 95, 198–203.

    Article  CAS  Google Scholar 

  28. Wen, T., Yang, B., et al. (2014). Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications. Physical Chemistry Chemical Physics, 16(42), 23188–23195.

    Article  CAS  Google Scholar 

  29. Kovalchuk, A., Huang, K., et al. (2015). Luminescent polymer composite films containing coal-derived graphene quantum dots. ACS Applied Materials & Interfaces, 7(47), 26063–26068.

    Article  CAS  Google Scholar 

  30. Zheng, X. T., Ananthanarayanan, A., et al. (2015). Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small, 11(14), 1620–1636.

    Article  CAS  Google Scholar 

  31. Mahesh, S., Lekshmi, C. L., et al. (2017). New paradigms for the synthesis of graphene quantum dots from sustainable bioresources. New Journal of Chemistry, 41(17), 8706–8710.

    Article  CAS  Google Scholar 

  32. Suryawanshi, A., Biswal, M., et al. (2014). Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions. Nanoscale, 6(20), 11664–11670.

    Article  CAS  Google Scholar 

  33. Roy, P., Periasamy, A. P., et al. (2014). Plant leaf-derived graphene quantum dots and applications for white LEDs. New Journal of Chemistry, 38(10), 4946–4951.

    Article  CAS  Google Scholar 

  34. Roy, P., Periasamy, A. P., et al. (2015). Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale, 7(6), 2504–2510.

    Article  CAS  Google Scholar 

  35. Kalita, H., Mohapatra, J., et al. (2016). Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Advances, 6(28), 23518–23524.

    Article  CAS  Google Scholar 

  36. Ghosh, T., Chatterjee, S., et al. (2015). Photoinduced electron transfer from various aniline derivatives to graphene quantum dots. The Journal of Physical Chemistry A, 119(49), 11783–11790.

    Article  CAS  Google Scholar 

  37. Kwon, W., Do, S., et al. (2012). Formation of highly luminescent nearly monodisperse carbon quantum dots via emulsion-templated carbonization of carbohydrates. RSC Advances, 2(30), 11223–11226.

    Article  CAS  Google Scholar 

  38. Wang, L., Li, W., et al. (2016a). Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal, 300, 75–82.

    Article  CAS  Google Scholar 

  39. Mahesh, S., Lekshmi, C. L., et al. (2016). Simple and cost-effective synthesis of fluorescent graphene quantum dots from honey: Application as stable security ink and white-light emission. Particle & Particle Systems Characterization, 33(2), 70–74.

    Article  CAS  Google Scholar 

  40. Renuka, K. D., Lekshmi, C. L., et al. (2017). Sustainable bioresource-derived components for molecular keypad lock and IMPLICATION logic gate construction. Chemistry Select, 2(35), 11615–11619.

    CAS  Google Scholar 

  41. Li, Y., Hu, Y., et al. (2011). An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Advanced Materials, 23(6), 776–780.

    Article  CAS  Google Scholar 

  42. Hwang, E., Hwang, H. M., et al. (2016). Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe. Scientific Reports, 6, 39448.

    Article  CAS  Google Scholar 

  43. Sun, H., Wu, L., et al. (2013). Recent advances in graphene quantum dots for sensing. Materials Today, 16(11), 433–442.

    Article  CAS  Google Scholar 

  44. Emsley, J. (1980). Very strong hydrogen bonding. Chemical Society Reviews, 9(1), 91–124.

    Article  CAS  Google Scholar 

  45. Larson, J., & McMahon, T. (1984). Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY-species (X, Y= F, Cl, Br, CN). Inorganic Chemistry, 23(14), 2029–2033.

    Article  CAS  Google Scholar 

  46. Van Amersfoort, E. S., & Van Strijp, J. A. G. (1994). Evaluation of a flow cytometric fluorescence quenching assay of phagocytosis of sensitized sheep erythrocytes by polymorphonuclear leukocytes. Cytometry, 17(4), 294–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankarapillai Mahesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahesh, S., Renuka, K.D. (2020). Bioresource-Derived Graphene Quantum Dots: A Tale of Sustainable Materials and Their Applications. In: Yu, P., Wang, Z. (eds) Quantum Dot Optoelectronic Devices. Lecture Notes in Nanoscale Science and Technology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-35813-6_8

Download citation

Publish with us

Policies and ethics