Skip to main content

Quantum Dot Materials Toward High-Speed and Ultrafast Laser Applications

  • Chapter
  • First Online:
Quantum Dot Optoelectronic Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 27))

Abstract

Self-assembled In(Ga)As/GaAs quantum dots (QDs) have attracted much attention for both high-speed and ultrafast laser applications because of their fascinating optical and electronic properties. Here, we will review recent development of InAs/GaAs quantum dots and their applications to high-speed lasers and ultrafast lasers. The chapter includes two main sections, one is focusing on developing high-quality 1310 nm InAs/GaAs quantum dot structures and fabricating high-performance lasers including ultrashort cavity Fabry-Pérot (F-P) and distributed feedback (DFB) lasers. We will discuss effects of the modulation p-doping on optical properties of 1310 nm InAs/GaAs QDs and share our latest results on ultrashort cavity F-P and DFB lasers. The other is about the recent works on the development of 1550 nm InAs/GaAs quantum dot semiconductor saturable absorber mirrors (QD-SESAMs) and the realization of a high repetition rate diode-pumped solid-state and Q-switched Er-doped fiber laser mode-locked by the utilization of 1550 nm QD-SESAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bimberg, D., Kirstaedter, N., Ledentsov, N. N., Alferov, Z. I., Kop’ev, P. S., & Ustinov, V. M. (1997). InGaAs-GaAs quantum-dot lasers. IEEE Journal of Selected Topics in Quantum Electronics, 3, 196–205.

    Article  CAS  Google Scholar 

  2. Shchekin, O. B., & Deppe, D. G. (2002). 1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C. Applied Physics Letters, 80, 3277–3279.

    Article  CAS  Google Scholar 

  3. Kim, J., & Chuang, S. L. (2006). Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE Journal of Quantum Electronics, 42, 942–952.

    Article  CAS  Google Scholar 

  4. Capua, A., Rozenfeld, L., Mikhelashvili, V., Eisenstein, G., Kuntz, M., & Laeemmlin, M. (2007). Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Optics Express, 15, 5388–5393.

    Article  CAS  Google Scholar 

  5. Kami, O., Capua, A., Eisenstein, G., Franke, D., Kreissl, J., Kuenzel, H., Arsenijević, D., Schmeckebier, H., Stubenrauch, M., Kleinert, M., Bimberg, D., Gilfert, C., & Reithmaier, J. P. (2013). Nonlinear pulse propagation in a quantum dot laser. Optics Express, 21, 5715–5736.

    Article  CAS  Google Scholar 

  6. Hantschmann, C., Vasil’ev, P. P., Chen, S., Liao, M., Seeds, A. J., Liu, H., Penty, R. V., & White, I. H. (2018). Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. Journal of Lightwave Technology, 36, 3837–3842.

    Article  CAS  Google Scholar 

  7. Korenev, V. V., Savelyev, A. V., Zhukov, A. E., Omelchenko, A. V., & Maximov, M. V. (2014). The analytical approach to the multi-state lasing phenomenon in undoped and p-doped InAs/InGaAs semiconductor quantum dot lasers. Proceedings of SPIE, 9134, 913406.

    Article  Google Scholar 

  8. Liu, Q. L., Hou, C. C., Chen, H. M., Ning, J. Q., Li, Q. Z., Huang, Y. Q., Zhao, Z. Y., Wang, Z. G., Jin, P., & Zhang, Z. Y. (2018). Effects of modulation P-doping on thermal stability of InAs/GaAs quantum dot superluminescent diodes. Journal of Nanoscience and Nanotechnology, 6, 7536–7541.

    Article  CAS  Google Scholar 

  9. Chia, C. K., Chua, S. J., Wang, Y. J., Yong, A. M., & Chow, S. Y. (2007). Impurity free vacancy disordering of InAs/GaAs quantum dot and InAs/InGaAs dot-in-a-well structures. Thin Solid Films, 515, 3927–3931.

    Article  CAS  Google Scholar 

  10. Saha, J., Panda, D., Tongbram, B., Das, D., Chavan, V., & Chakrabarti, S. (2019). Higher performance optoelectronic devices with In0.21Al0.21Ga0.58As/In0.15Ga0.85As capping of III-V quantum dots. Journal of Luminescence, 210, 75–82.

    Article  CAS  Google Scholar 

  11. Liu, H. Y., Sellers, I. R., Badcock, I. R., Mowbray, D. J., & Skolnick, M. S. (2004). Improved performance of 1.3 μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Applied Physics Letters, 85, 704–706.

    Article  CAS  Google Scholar 

  12. Mi, Z., Bhattacharya, P., & Fathpour, S. (2005). High-speed 1.3 μm tunnel injection quantum-dot lasers. Applied Physics Letters, 96, 153109.

    Article  CAS  Google Scholar 

  13. Yu, H. C., Wang, J. S., Su, Y. K., Chang, S. J., Lai, F. I., Chang, Y. H., Kuo, H. C., Sung, C. P., Yang, P. D., Lin, K. F., Wang, J. M., Chi, J. Y., Hsiao, R. S., & Mikhrin, S. (2006). 1.3-μm InAs-InGaAs quantum-dot vertical-cavity surface-emitting laser with fully doped DBRs grown by MBE. IEEE Photonics Technology Letters, 18, 418–420.

    Article  CAS  Google Scholar 

  14. Liu, C. Y., Yoon, S. F., Cao, Q., Tong, C. Z., & Li, H. F. (2007). Low transparency current density and high temperature operation from ten-layer p-doped 1.3 μm InAs/InGaAs/GaAs quantum dot lasers. Applied Physics Letters, 90, 041103.

    Article  CAS  Google Scholar 

  15. Tong, C., Xu, D., & Yoon, S. F. (2009). Carrier relaxation and modulation response of 1.3-μm InAs-GaAs quantum dot lasers. Journal of Lightwave Technology, 27, 5442–5450.

    Article  CAS  Google Scholar 

  16. Liu, S. W., Liu, R. Y., & Lin, H. C. (2017). Tailoring energy band alignment of vertically aligned InGaAs quantum dots capped with GaAs(Sb)/AlGaAsSb composite structure after thermal annealing treatment. ACS Photonics, 4, 242–250.

    Article  CAS  Google Scholar 

  17. Abdollahinia, A., Banyoudeh, S., Rippien, A., Schnabel, F., Eyal, O., Cestier, I., Kalifa, I., Mentovichm, E., Eisenstein, G., & Reithmaier, J. P. (2018). Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers. Optics Express, 26, 6056–6066.

    Article  CAS  Google Scholar 

  18. Dai, Y., Fan, J., Chen, Y., Lin, R., Lee, S., & Lin, H. (1997). Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses. Journal of Applied Physics, 82, 4489–4492.

    Article  CAS  Google Scholar 

  19. Cao, Q., Yoon, S., Liu, C., & Tong, C. (2008). Effects of rapid thermal annealing on optical properties of p-doped and undoped InAs/InGaAs dots-in-a-well structures. Journal of Applied Physics, 104, 033522.

    Article  CAS  Google Scholar 

  20. Liu, H. Y., Dai, Q. F., Wu, L. J., Lan, S., Trofimov, V., & Varentsova, S. (2012). Effects of p-type doping on the optical properties of InAs/GaAs quantum dots. Solid State Communications, 152, 435–439.

    Article  CAS  Google Scholar 

  21. Chaabani, W., Melliti, A., Maaref, M., Testelin, C., & Lemaitre, A. (2016). Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power. Physics B, 493, 53–57.

    Article  CAS  Google Scholar 

  22. Nakahara, K., Tsuchiya, T., Kitatani, T., Shinoda, K., Taniguchi, T., Kikawa, T., Aoki, M., & Mukaikubo, M. (2007). 40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers. IEEE Photonics Technology Letters, 19, 1436–1438.

    Article  CAS  Google Scholar 

  23. Zhang, C., Srinivasan, S., Tang, Y., Heck, M. J., Davenport, M. L., & Bowers, J. E. (2014). Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Optics Express, 22, 10202–10209.

    Article  CAS  Google Scholar 

  24. Jhang, Y. H., Mochida, R., Tanabe, K., Takemasa, K., Sugawara, M., Iwamoto, S., & Arakawa, Y. (2016). Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C. Optics Express, 24, 18428–18435.

    Article  CAS  Google Scholar 

  25. Banyoudeh, S., Abdollahinia, A., Eual, O., Schkovskyi, V., Eisenstein, G., & Reithmaier, J. P. (2016). Temperature-insensitive high-speed directly modulated 1.55 μm quantum dot lasers. IEEE Photonics Technology Letters, 28, 2451–2454.

    Article  CAS  Google Scholar 

  26. Arsenijević, D., Schliwa, A., Schmeckebier, H., Stubenrauch, M., Spiegelberg, M., Bimberg, D., Mikhelashvili, V., & Eisenstein, G. (2014). Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers. Applied Physics Letters, 104, 181101.

    Article  CAS  Google Scholar 

  27. Deppe, D. G., Shavritranuruk, K., Ozgur, G., Chen, H., & Freisem, S. (2009). Quantum dot laser diode with low threshold and low internal loss. Electronics Letters, 45, 54–55.

    Article  CAS  Google Scholar 

  28. Wu, J., Shao, D., Dorogan, V. G., Li, A. Z., Li, S., DeCuir, E. A., Manasreh, M. O., Wang, Z. M., Mazur, Y. I., & Salamo, G. J. (2010). Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. Nano Letters, 10, 1512–1516.

    Article  CAS  Google Scholar 

  29. Zhang, Z., Hogg, R. A., Lv, X. Q., & Wang, Z. G. (2010). Self-assembled quantum-dot superluminescent light-emitting diodes. Advances in Optics and Photonics, 2, 201–228.

    Article  CAS  Google Scholar 

  30. Zhang, Z., Oehler, A. E. H., Resan, B., Kurmulis, S., Zhou, K. J., Wang, Q., Mangold, M., Suedmeyer, T., Keller, U., Weigarten, K. J., & Hogg, R. A. (2012). 1.55 μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. Scientific Reports, 2, 477.

    Article  CAS  Google Scholar 

  31. Resan, B., Kurmulis, S., Zhang, Z., Oehler, A. E. H., Markovic, V., Mangold, M., Sudmeyer, T., Keller, U., Hogg, R. A., & Weigarten, K. J. (2016). 10 GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror. Applied Optics, 55, 3776–3780.

    Article  CAS  Google Scholar 

  32. Oehler, A. E. H., Suedmeter, T., Weingarten, K. J., & Keller, U. (2008). 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses. Optics Express, 16, 21930–21935.

    Article  CAS  Google Scholar 

  33. Maas, D. J. H. C., Bellancourt, A. R., Hoffmann, M., Rudin, B., Barbarin, Y., Golling, M., Sudmeyer, T., & Keller, U. (2008). Growth parameter optimization for fast quantum dot SESAMs. Optics Express, 16, 18646–18656.

    Article  CAS  Google Scholar 

  34. White, S. E., & Cataluna, M. A. (2015). Unlocking spectral versatility from broadly-tunable quantum-dot lasers. Photonics, 2, 719–744.

    Article  CAS  Google Scholar 

  35. Gorodetsky, A., Yadav, A., Avrutin, E., Fedorova, K. A., & Rafailov, E. U. (2018). Photoelectric properties of InAs/GaAs quantum dot photoconductive antenna wafers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1900105.

    Article  Google Scholar 

  36. Salhi, A., Alshaibani, S., Alaskar, Y., Albadri, A., Alyamani, A., & Missous, M. (2018). Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers. Applied Physics Letters, 113, 103101.

    Article  CAS  Google Scholar 

  37. Paranthoen, C., Bertru, N., Dehaese, O., Corre, A. L., Loualiche, S., & Lambert, B. (2001). Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm. Applied Physics Letters, 78, 1751–1753.

    Article  CAS  Google Scholar 

  38. Miyazawa, T., Takemoto, K., Sakuma, Y., Hirose, S., Usuki, T., Yokoyama, N., Takatsu, M., & Arakawa, Y. (2005). Single-photon generation in the 1.55-μm optical-fiber band from an InAs/InP quantum dot. Japanese Journal of Applied Physics, 44, 20–23.

    Article  CAS  Google Scholar 

  39. Zilkie, A. J., Meier, J., & Smith, P. W. E. (2006). InAs/InGaAsP quantum dot amplifier operating at 1.55 μm. Optics Express, 14, 11453–11459.

    Article  Google Scholar 

  40. Lelarge, F., Dagens, B., Renaudier, J., Brenot, R., Accard, A., Dijk, F. V., & Make, D. (2007). Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm. IEEE Journal of Selected Topics in Quantum Electronics, 13, 111–124.

    Article  CAS  Google Scholar 

  41. Rosales, R., Merghem, K., Martinez, A., Akrout, A., Tourrenc, J. P., Accard, A., Lelarge, F., & Ramdane, A. (2011). InAs/InP quantum-dot passively mode-locked lasers for 1.55-μm applications. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1292–1301.

    Article  CAS  Google Scholar 

  42. Mikhrin, V. S., Vasil’ev, A. P., & Semenova, E. S. (2006). InAs/InGaNAs/GaNAs QW and QD heterostructures emitting at 1.4-1.8 μm. Semiconductors, 40, 342–345.

    Article  CAS  Google Scholar 

  43. Seravalli, L., Frigeri, P., Trevisi, G., & Franchi, S. (2008). 1.59 μm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates. Applied Physics Letters, 92, 213104.

    Article  CAS  Google Scholar 

  44. Ripalda, J. M., Granados, D., & Gonzalez, Y. (2005). Room temperature emission at 1.6 mu m from InGaAs quantum dots capped with GaAsSb. Applied Physics Letters, 87, 202108.

    Article  CAS  Google Scholar 

  45. Richter, M., Damilano, B., Massies, J., Duboz, J. Y., Wieck, A. D., et al. (2006). Progress in Semiconductor Materials V-Novel Materials and Electronic and Optoelectronic Applications, 891, 185–190.

    Google Scholar 

  46. Ledentsov, N. N., Kovsh, A. R., Zhukov, A. E., Maleev, N. A., Mikhrin, S. S., Vasil’ev, A. P., Semenova, E. S., Maximov, M. V., Shernyakov, Y. M., Kryzhanovskaya, N. V., Ustinov, V. M., & Bimberg, D. (2003). High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electronics Letters, 39, 1126–1128.

    Article  CAS  Google Scholar 

  47. Bakopoilos, P. (2007). Multi-wavelength laser source for dense wavelength division multiplexing networks. Proceedings of Optical Fiber Communications Conference paper OWJ2.

    Google Scholar 

  48. Bartels, A., Heinecke, D., & Diddams, S. A. (2009). 10-GHz self-referenced optical frequency comb. Science, 326, 681–682.

    Article  CAS  Google Scholar 

  49. Hillerkuss, D., Schmogrow, R., Schellinger, T., et al. (2011). 26 Tbits/s line-rate super-channel transmission utilizing alloptical fast Fourier transform processing. Nature Photonics, 5, 364–371.

    Article  CAS  Google Scholar 

  50. Li, Q., Wang, X., Chen, H. M., Huangm, Y., Hou, C., Wang, J., Zhang, R., Ning, J., Min, J., Zheng, C. C., & Zhang, Z. (2018). Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry−Perot and distributed-feedback laser diodes. ACS Photonics, 5, 1084–1093.

    Article  CAS  Google Scholar 

  51. Mazur, Y. I., Liang, B., Wang, Z. M., Tarasov, G., Guzun, D., & Salamo, G. (2007). Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots. Journal of Applied Physics, 101, 014301.

    Article  CAS  Google Scholar 

  52. Kumagai, N., Watanabe, K., Nakata, Y., & Arakawa, Y. (2007). Optical properties of p-type modulation-doped InAs quantum dot structures grown by molecular beam epitaxy. Journal of Crystal Growth, 301, 805–808.

    Article  CAS  Google Scholar 

  53. Berg, T. W., & Mørk, J. (2003). Quantum dot amplifiers with high output power and low noise. Applied Physics Letters, 82, 3083–3085.

    Article  CAS  Google Scholar 

  54. Harbord, E., Spencer, P., Clarke, E., & Murray, R. (2009). Radiative lifetimes in undoped and p-doped InAs/GaAs quantum dots. Physical Review B: Condensed Matter and Materials Physics, 80, 195312.

    Article  CAS  Google Scholar 

  55. Paul, S., Roy, J., & Basu, P. (1991). Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1−xAs. Journal of Applied Physics, 69, 827–829.

    Article  CAS  Google Scholar 

  56. Su, L., Liang, B., Wang, Y., Guo, Q., Li, X., Wang, S., Fu, G., Mazur, Y. I., Ware, M. E., & Salamo, G. J. (2016). The continuum state in photoluminescence of type-II In0.46Al0.54As/Al0.54Ga0.46As quantum dots. Applied Physics Letters, 109, 183103.

    Article  CAS  Google Scholar 

  57. Babinski, A., & Jasinski, J. (2002). Post-growth thermal treatment of self-assembled InAs/GaAs quantum dots. Thin Solid Films, 412, 84–88.

    Article  CAS  Google Scholar 

  58. Gunawan, O., Djie, H., & Ooi, B. (2005). Electronics states of interdiffused quantum dots. Physical Review B, 71, 205319.

    Article  CAS  Google Scholar 

  59. Zhao, H., Yoon, S., Ngo, C., Wang, R., Cao, Q., & Liu, C. (2011). Effects of annealing and p-doping on the two-state competition in 1.3 μm InAs/GaAs quantum-dot lasers. IEEE Transactions on Nanotechnology, 10, 1211–1213.

    Article  Google Scholar 

  60. Smowton, P. M., Sandall, I. C., Mowbray, D. J., Liu, H. Y., & Hopkinson, M. (2007). Temperature-dependent gain and threshold in p-doped quantum dot lasers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1261–1266.

    Article  CAS  Google Scholar 

  61. Gao, F., Luo, S., Ji, H., Liu, S. T., Xu, F., Lv, Z., Lu, D., Ji, C., & Yang, T. (2016). Ultrashort pulse and high power mode-locked laser with chirped InAs/InP quantum dot active layers. IEEE Photonics Technology Letters, 28, 1481–1484.

    Article  CAS  Google Scholar 

  62. Sopanen, M., Xin, H. P., & Tu, C. W. (2000). Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs. Applied Physics Letters, 76, 994–996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Ning, J., Zheng, C., Zhang, Z. (2020). Quantum Dot Materials Toward High-Speed and Ultrafast Laser Applications. In: Yu, P., Wang, Z. (eds) Quantum Dot Optoelectronic Devices. Lecture Notes in Nanoscale Science and Technology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-35813-6_7

Download citation

Publish with us

Policies and ethics