Skip to main content

Electrical Performance of Bulk Al–ZrB2 Nanocomposites from 2 K to 300 K

  • Conference paper
  • First Online:
Book cover Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Electrical properties are of significance for metals/alloys and their applications. While nanoparticles can enhance mechanical performance of metals/alloys, there is a strong need to understand how nanoparticles affect their electric behavior at various temperatures. In this study, ZrB2 nanoparticles were synthesized in situ to cast bulk Al–ZrB2 samples for electric characterizations. The electrical conductivity, electron mobility, and electron concentration of Al–3 vol.% ZrB2 were measured in the temperature range from 2 K to 300 K. The effects of in situ ZrB2 nanoparticles on the Al matrix were systematically studied in terms of its compositions, morphologies, grain sizes, and nanophase sizes. It is discovered the Al–ZrB2 interfaces play a key role in tuning structural and electrical performances. This mechanism is important to better understand the electron behaviors in Al alloys containing in situ nanoparticles. The in situ fabrication and electrical characterization methods can be readily applied to other metallic nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan S, Zhang Z (2018) Fundamental theories and basic principles of triboelectric effect: a review. Friction 1–16. https://doi.org/10.1007/s40544-018-0217-7

    Article  Google Scholar 

  2. Guan Z, Hwang I, Pan S, Li X (2018) Scalable manufacturing of AgCu^40 (Wt.%)–WC nanocomposite microwires. J Micro Nano-Manuf. https://doi.org/10.1115/1.4040558

  3. Pan S, Yao G, Sokoluk M, Guan Z, Li X (2019) Enhanced thermal stability in Cu-40 wt% Zn/WC nanocomposite. Mater Des 107964.  https://doi.org/10.1016/j.matdes.2019.107964

    Article  CAS  Google Scholar 

  4. Holwech I, Jeppesen J (1967) Temperature dependence of the electrical resistivity of Aluminium films. Philos Mag J Theor. Exp Appl Phys 15(134):217–228. https://doi.org/10.1080/14786436708227694

    Article  CAS  Google Scholar 

  5. Gall D (2016) Electron mean free path in elemental metals. J Appl Phys 119(8):085101. https://doi.org/10.1063/1.4942216

    Article  CAS  Google Scholar 

  6. Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528(7583):539–543. https://doi.org/10.1038/nature16445

    Article  CAS  Google Scholar 

  7. Pan S, Sokoluk M, Cao C, Guan Z, Li X (2019) Facile fabrication and enhanced properties of Cu-40 wt% Zn/WC nanocomposite. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.01.022

    Article  Google Scholar 

  8. Sokoluk M, Cao C, Pan S, Li X (2019) Nanoparticle-enabled phase control for Arc welding of Unweldable Aluminum Alloy 7075. Nat Commun 10(1):98. https://doi.org/10.1038/s41467-018-07989-y

    Article  CAS  Google Scholar 

  9. Zeng W, Xie J, Zhou D, Fu Z, Zhang D, Lavernia EJ (2018) Bulk Cu-NbC nanocomposites with high strength and high electrical conductivity. J Alloys Compd 745:55–62. https://doi.org/10.1016/j.jallcom.2018.02.215

    Article  CAS  Google Scholar 

  10. Xu P, Jiang F, Tang Z, Yan N, Jiang J, Xu X, Peng Y (2019) Coarsening of Al3Sc precipitates in Al–Mg–Sc alloys. J Alloys Compd 781:209–215. https://doi.org/10.1016/j.jallcom.2018.12.133

    Article  CAS  Google Scholar 

  11. Zhang Y, Li X (2017) Bioinspired, Graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett 17(11):6907–6915. https://doi.org/10.1021/acs.nanolett.7b03308

    Article  CAS  Google Scholar 

  12. Yang H, Gao T, Wu Y, Zhang H, Nie J, Liu X (2018) Microstructure and mechanical properties at both room and high temperature of in-situ TiC reinforced Al–4.5 Cu matrix nanocomposite. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.07.045

    Article  CAS  Google Scholar 

  13. Pan S, Guan Z, Yao G, Cao C, Li X (2019) Study on electrical behaviour of copper and its alloys containing dispersed nanoparticles. Curr Appl Phys. https://doi.org/10.1016/j.cap.2019.01.016

    Article  Google Scholar 

  14. Chang S-Y, Chen C-F, Lin S-J, Kattamis TZ (2003) Electrical resistivity of metal matrix composites. Acta Mater 51(20):6291–6302. https://doi.org/10.1016/S1359-6454(03)00462-2

    Article  CAS  Google Scholar 

  15. Jiang S, Wang R (2019) Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg–Si–Sc Alloys. J Mater Sci Technol 35(7):1354–1363. https://doi.org/10.1016/j.jmst.2019.03.011

    Article  Google Scholar 

  16. Roy RK, Das S (2006) New combination of polishing and etching technique for revealing grain structure of an annealed aluminum (AA1235) Alloy. J Mater Sci 41(1):289–292. https://doi.org/10.1007/s10853-005-3304-x

    Article  CAS  Google Scholar 

  17. Gasparov VA, Sidorov NS, Zver’kova II, Kulakov MP (2001) Electron transport in Diborides: observation of superconductivity in ZrB2. J Exp Theor Phys Lett 73(10):532–535. https://doi.org/10.1134/1.1387521

    Article  CAS  Google Scholar 

  18. Ahadi K, Shoron OF, Marshall PB, Mikheev E, Stemmer S (2017) Electric field effect near the metal-insulator transition of a two-dimensional electron system in SrTiO3. Appl Phys Lett 110(6):062104. https://doi.org/10.1063/1.4975806

    Article  CAS  Google Scholar 

  19. Justin JF, Jankowiak A (2011) Ultra high temperature ceramics: densification. Prop Thermal Stab AerospaceLab 3:1–11

    Google Scholar 

  20. Qian LH, Lu QH, Kong WJ, Lu K (2004) Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu. Scr Mater 50(11):1407–1411. https://doi.org/10.1016/j.scriptamat.2004.02.026

    Article  CAS  Google Scholar 

  21. Basinski ZS, Dugdale JS, Howie A (1963) The electrical resistivity of dislocations. Philos Mag J Theor Exp Appl Phys 8(96):1989–1997. https://doi.org/10.1080/14786436308209092

    Article  CAS  Google Scholar 

  22. Mosleh-Shirazi S, Hua G, Akhlaghi F, Yan X, Li D (2015) Interfacial valence electron localization and the corrosion resistance of Al–SiC nanocomposite. Sci Rep 5:18154. https://doi.org/10.1038/srep18154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation and MetaLi L.L.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, S., Yao, G., Yuan, J., Li, X. (2019). Electrical Performance of Bulk Al–ZrB2 Nanocomposites from 2 K to 300 K. In: Srivatsan, T., Gupta, M. (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-35790-0_5

Download citation

Publish with us

Policies and ethics