Skip to main content

Effect of Graphene Nanosheets Reinforcement on the Mechanical Properties of Rubber Seed Oil Based Polyurethane Nanocomposites

  • Conference paper
  • First Online:
Book cover Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 622 Accesses

Abstract

Graphene-reinforced polyurethane nanocomposites were prepared by catalytic reaction of dispersion of exfoliated graphene nanosheet/rubber seed oil polyol (Gr–RSOP) hybrid and polyisocyanates (hexamethylene diisocyanate, HMDI, and 4,4’-methylene-bis(phenylisocyanate, MDI), at equimolar reactant ratios (NCO/OH ratio of 1.0), to give samples Gr–PUH and Gr–PUM, respectively. The structure and morphology of the obtained nanocomposites were analyzed using X-ray diffraction, atomic force microscopy (AFM) and FT–IR, respectively, while the mechanical and thermal properties were determined using nanoindenter, universal testing machine and thermogravimetric analyzer. The X-ray pattern revealed exfoliated graphene nanosheets in the nanocomposites, while the structures of the neat polyurethanes and nanocomposites showed great similarity. The hardness, tensile strength, young modulus, and thermal stability showed varied improvement and a corresponding reduction in elongation attributed to graphene incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inagaki M, Tashiro R, Washino Y, Toyoda M (2004) J Phys Chem Solids 65:133

    Google Scholar 

  2. Chung DDL (1987) J Mater Sci 22:4190

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  4. Nandamuri G, Roumimov S, Solanki R (2010) Chemical vapor deposition of graphene films. Nanotechnology 21–145604

    Google Scholar 

  5. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri KH, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5(8):574–578

    Article  CAS  Google Scholar 

  6. Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar MVS, Park J, Mc Euen PL, Parpia JM, Craighead HG, Spencer MG (2009) Free-standing epitaxial graphene. Nano Lett 9(9):3100–3105

    Article  CAS  Google Scholar 

  7. Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Hänke T, Büchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M (2010) Graphene synthesis on cubic sic/si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995

    Article  CAS  Google Scholar 

  8. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, Mc Chesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207

    Article  CAS  Google Scholar 

  9. Deng D, Pan X, Zhang H, Fu Q, Tan D, Bao X (2010) Frees tanding graphene by thermal splitting of silicon carbide granules. Adv Mater 22(19):2168–2171

    Article  CAS  Google Scholar 

  10. Cui X, Zhang C, Hao R, Hou Y (2011) Liquid-phase exfoliation, functionalization and application of graphene, nanoscale 3:2118–2126

    Article  CAS  Google Scholar 

  11. Mittal V (2012) Polymer–Graphene nanocomposites. RSC nanoscience & nanotechnology No. 26. The Royal Society of Chemistry. Published by the Royal Society of Chemistry, www.rsc.org

  12. Allen ML, Tung VC, Kaner RB (2010) honeycomb carbon: a review of graphene. Chem Rev 2010(110):132–145

    Article  Google Scholar 

  13. Chen Z, Chisholm B, Patani R, Wu J, Fernando S, Jogodzinski K, Webster D (2010) Soybased UV-curable thiol–ene coatings. J Coat Technol Res 7:603–613

    Article  CAS  Google Scholar 

  14. Xu M, Zhang W, Yang Z, Yu F, Ma Y, Hu N, He D, Liang Q, Su Y, Zhang Y (2015) One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale 7:10527–10534

    Article  CAS  Google Scholar 

  15. Liu W, Bao-Yu Xia B-Y, Xiao-Xia Wang X-X, Wang J-N (2012) Exfoliation and dispersion of graphene in ethanol-water mixtures. Front Mater Sci 6(2):176–182

    Article  Google Scholar 

  16. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) Nature 446:60

    Article  CAS  Google Scholar 

  17. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  18. Sham AYW, Notley SM (2013) A review of fundamental properties and applications of polymer–graphene hybrid materials. Soft Matter 9:6645–6653

    Article  CAS  Google Scholar 

  19. Zhang YB, Small JP, Amori MES, Kim P (2005) Phys Rev Lett 94:176–803

    Google Scholar 

  20. Su CY, Xu YP, Zhang WJ et al (2009) Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem Mater 21(23):5674–5680

    Article  CAS  Google Scholar 

  21. Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  22. Lin YM, Jenkins KA, Valdes-Garcia A et al (2009) Operation of graphene transistors at gigahertz frequencies. Nano Lett 9(1):422–426

    Article  CAS  Google Scholar 

  23. Si YC, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20(21):679–6792

    Article  Google Scholar 

  24. Skaltsas T, Karousis N, Yan H-J, Wang C-R, Pispas S, Tagmatarchis N (2012) Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic bock copolymers. J Mater Chem 2012(22):21507

    Article  Google Scholar 

  25. Gómez-Navarro C, Weitz RT, Bittner AM et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503

    Article  Google Scholar 

  26. Dimiev A, Kosynkin DV, Alemany LB et al (2012) Pristine graphite oxide. J Am Chem Soc 134(5):2815–2822

    Article  CAS  Google Scholar 

  27. Tung VC, Allen MJ, Yang Y et al (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25–29

    Article  CAS  Google Scholar 

  28. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  29. Luo Z, Lu Y, Somers LA et al (2009) High yield preparation of macroscopic graphene oxide membranes. J Am Chem Soc 131(3):898–899

    Article  CAS  Google Scholar 

  30. Tang LH, Wang Y, Li YM et al (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Func Mater 19(17):2782–2789

    Article  CAS  Google Scholar 

  31. Notley SM (2012) Langmuir 28:14110–14113

    Article  CAS  Google Scholar 

  32. Zheng W, Wong S-C (2003) Compos. Sci. Technol. 63(2):225–235

    Article  CAS  Google Scholar 

  33. Zheng W, Wong S-C, Sue H-J (2002) Polymer 73(25):6767–6773

    Article  Google Scholar 

  34. Xu J, Hu Y, Song L, Wang Q, Fan W, Liao G, Chen Z (2001) Polym Degrad Stab 73(1):29–31

    Article  CAS  Google Scholar 

  35. Sadasivuni KK, Ponnamma D, Kim J, Thomas S (eds) (2015) Graphene-based polymer nanocomposite in electronics, VI, 382 p 175. ISBN 978-3-319-13874-9

    Google Scholar 

  36. Jing-Wei S, Xiao-Mei C, Wen-Yi H (2003) J Appl Polym Sci 88(7):1864–1869

    Article  Google Scholar 

  37. Liu PG, Xiao P, Xiao M, Gong K-C (2000) Chin J Polym Sci 18(5):413–418. Wenge Z, Xuehong L, Shing-Chung WJ (2004) Appl Polym Sci, 91(5):2781–2788

    Google Scholar 

  38. Kim H, Abdala AA, Macosko CW (2010) Graphen/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  39. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Mater Sci 35:1350–1375

    CAS  Google Scholar 

  40. Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1):145–152

    Article  CAS  Google Scholar 

  41. Liu S, Tian M, Yan B, Yao Y, Zhang L, Nishi T (2015) High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer 56:375–384

    Article  CAS  Google Scholar 

  42. Obazee EO (2018) PhD Thesis. Biobased polymers from modified rubber seed oil, University of Benin City, Benin City

    Google Scholar 

  43. Ferrer CC, Babb D, Ryan AJ (2008) Characterization of polyurethane networks based on vegetable derived polyol. Polymer 49:3279–3287

    Article  CAS  Google Scholar 

  44. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge with gratitude Prof. Timothy Gonsalves, the Director of Indian Institute of Technology Mandi, Himachal Pradesh, India, for the Research Internship granted to EOO that made this possible, and Prof. I.O. Eguavoen, the Executive Director of Rubber Research Institute of Nigeria for the research leave granted to EOO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Obazee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obazee, E.O., Okieimen, F.E. (2019). Effect of Graphene Nanosheets Reinforcement on the Mechanical Properties of Rubber Seed Oil Based Polyurethane Nanocomposites. In: Srivatsan, T., Gupta, M. (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-35790-0_12

Download citation

Publish with us

Policies and ethics