Skip to main content

Processing, Properties and Potential Applications of Magnesium Alloy-Based Nanocomposites: A Review

  • Conference paper
  • First Online:

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Strong, ductile, lightweight, biocompatible and non-toxic materials are the need of the hour for metal-based industries such as aerospace, automotive, electronics and biomedical sectors. Magnesium -based materials, due to their lightweight, excellent dimensional stability and mechanical integrity, have a tremendous potential to replace the existing commercial Al, Ti alloys and steels currently being used. Due to these attractive qualities of magnesium , there has been a spurt in the quest of a variety of magnesium materials targeting different functionalities. One subset of magnesium -based materials is magnesium alloy-based nanocomposites that exhibit advantages of both magnesium alloys and magnesium nanocomposites . There has been advancement in this field through careful selection of alloying elements and reinforcement and optimization to obtain the best combination of properties . Accordingly, this paper will focus on the recent developments of magnesium alloy-based nanocomposites capable of replacing conventional materials in multiple engineering and biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gupta M (2018) Global emergence and significance of magnesium/technology. Mater Sci Res India 15

    Article  CAS  Google Scholar 

  2. Tekumalla S, Nandigam Y, Bibhanshu N, Rajashekara S, Yang C, Suwas S, Gupta M (2018) A strong and deformable in-situ magnesium nanocomposite igniting above 1000 ℃. Sci Rep 8:7038. https://doi.org/10.1038/s41598-018-25527-0

    Article  CAS  Google Scholar 

  3. Gupta M (2017) An insight into the capability of composite technology to enable magnesium to spread its wings in engineering and biomedical applications. SOJ Mater Sci Eng 5:1–2

    Article  Google Scholar 

  4. Gupta M, Wong WLE (2015) Magnesium-based nanocomposites: lightweight materials of the future. Mater Charact 105:30–46. https://doi.org/10.1016/j.matchar.2015.04.015

    Article  CAS  Google Scholar 

  5. Tekumalla S, Shabadi R, Yang C, Seetharaman S, Gupta M (2017) Strengthening due to the in-situ evolution of ß1′ Mg–Zn rich phase in a ZnO nanoparticles introduced Mg–Y alloy. Scripta Mater 133:29–32. https://doi.org/10.1016/j.scriptamat.2017.02.019

    Article  CAS  Google Scholar 

  6. Parande G, Manakari V, Meenashisundaram GK, Gupta M (2017) Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates. J Mater Res 32:2169–2178. https://doi.org/10.1557/jmr.2017.194

    Article  CAS  Google Scholar 

  7. Tekumalla S, Gupta M (2017) An insight into ignition factors and mechanisms of magnesium based materials: a review. Mater Des 113:84–98. https://doi.org/10.1016/j.matdes.2016.09.103

    Article  CAS  Google Scholar 

  8. Tekumalla S, Gupta M, Min KH (2018) Using CaO Nanoparticles to improve mechanical and ignition response of Magnesium. Curr Nanomater 3:44–51. https://doi.org/10.2174/2405461503666180502101957

    Article  CAS  Google Scholar 

  9. Dieringa H (2018) Processing of magnesium-based metal matrix Nanocomposites by ultrasound-assisted particle dispersion: a review. Metals 8, https://doi.org/10.3390/met8060431

    Article  Google Scholar 

  10. Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543. https://doi.org/10.1038/nature16445, http://www.nature.com/nature/journal/v528/n7583/abs/nature16445.html#supplementary-information

    Article  CAS  Google Scholar 

  11. Matin MA, Lu L, Gupta M (2001) Investigation of the reactions between boron and titanium compounds with magnesium. Scripta Mater 45:479–486. https://doi.org/10.1016/S1359-6462(01)01059-4

    Article  CAS  Google Scholar 

  12. Chelliah NM, Singh H, Surappa MK (2017) Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing. Mater Chem Phys 194:65–76. https://doi.org/10.1016/j.matchemphys.2017.03.025

    Article  CAS  Google Scholar 

  13. Mounib M, Pavese M, Badini C, Lefebvre W, Dieringa H (2014) Reactivity and microstructure of Al2O3-reinforced magnesium-matrix composites. Adv Mater Sci Eng 2014:6. https://doi.org/10.1155/2014/476079

    Article  CAS  Google Scholar 

  14. Chen Y, Tekumalla S, Guo YB, Gupta M (2016) Introducing Mg−4Zn−3Gd−1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel. Sci Rep 6:32395. https://doi.org/10.1038/srep32395

    Article  CAS  Google Scholar 

  15. Tekumalla S, Bibhanshu N, Suwas S, Gupta M (2019) Superior ductility in magnesium alloy-based nanocomposites: the crucial role of texture induced by nanoparticles. J Mater Sci 54:8711–8718

    Article  CAS  Google Scholar 

  16. Tekumalla S, Farhan N, Srivatsan TS, Gupta M (2016) Nano-ZnO particles’ effect in improving the mechanical response of Mg−3Al−0.4Ce Alloy. Metals 6:276

    Article  Google Scholar 

  17. Availabe online: https://global.kyocera.com/prdct/fc/list/tokusei/bouchou/index.html

  18. Czerwinski F (2014) Controlling the ignition and flammability of magnesium for aerospace applications. Corros Sci 86:1–16. https://doi.org/10.1016/j.corsci.2014.04.047

    Article  CAS  Google Scholar 

  19. Han G, Chen D, Chen G, Huang J (2018) Development of non-flammable high strength extruded Mg–Al–Ca–Mn alloys with high Ca/Al ratio. J Mater Sci Technol 34:2063–2068. https://doi.org/10.1016/j.jmst.2018.03.019

    Article  Google Scholar 

  20. Liu M, Shih DS, Parish C, Atrens A (2012) The ignition temperature of Mg alloys WE43, AZ31 and AZ91. Corros Sci 54:139–142. https://doi.org/10.1016/j.corsci.2011.09.004

    Article  CAS  Google Scholar 

  21. Tekumalla S, Yang C, Seetharaman S, Wong WLE, Goh CS, Shabadi R, Gupta M (2016) Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium. J Alloy Compd 689:350–358. https://doi.org/10.1016/j.jallcom.2016.07.324

    Article  CAS  Google Scholar 

  22. Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scripta Mater 128:107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035

    Article  CAS  Google Scholar 

  23. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39:851–865. https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  24. Gupta MGaN (2017) Utilizing magnesium based materials to reduce green house gas emissions in aerospace sectors. Aeronaut Aerosp Open Access J, 1

    Google Scholar 

  25. Landkof B (2006) Magnesium applications in aerospace and electronic industries. Magnesium Alloys Appl. https://doi.org/10.1002/3527607552.ch28

    Article  Google Scholar 

  26. Gupta M (2018) A snapshot of remarkable potential of mg-based materials as implants. Mater Sci Eng Int J 2:30–33. https://doi.org/10.15406/mseij.2018.02.00030

    Article  Google Scholar 

  27. Gupta MGaS (2017) The promise of magnesium based materials in electromagnetic shielding. Jupiter Online J Mater Sci 2. https://doi.org/10.19080/jojms.2017.02.555598

  28. Shahin M, Munir K, Wen C, Li Y (2019) Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives. Acta Biomater 96:1–19. https://doi.org/10.1016/j.actbio.2019.06.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sravya Tekumalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tekumalla, S., Gupta, M. (2019). Processing, Properties and Potential Applications of Magnesium Alloy-Based Nanocomposites: A Review. In: Srivatsan, T., Gupta, M. (eds) Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-35790-0_1

Download citation

Publish with us

Policies and ethics