Skip to main content

Abstract

Precision healthcare is an emerging concept that will see technology-driven digital transformation of the health service. It enables customised patient outcomes via the development of novel, targeted medical approaches with a focus on intelligent, data-centric smart healthcare models. Currently, precision healthcare is seen as a challenging model to apply due to the complexity of the healthcare ecosystem, which is a multi-level and multifaceted environment with high real-time interactions among disciplines, practitioners, patients and discrete computer systems. Digital Twins (DT) pairs individual physical artefacts with digital models reflecting their status in real-time. Creating a live-model for healthcare services introduces new opportunities for patient care including better risk assessment and evaluation without disturbing daily activities. In this article, to address design and management in this complexity, we examine recent work in Digital Twins (DT) to investigate the goals of precision healthcare at a patient and healthcare system levels. We further discuss the role of DT to achieve precision healthcare, proposed frameworks, the value of active participation and continuous monitoring, and the cyber-security challenges and ethical implications for this emerging paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Constitution of the world health organization: Principles., 2005

    Google Scholar 

  2. W. H. Organization (1986) The Ottawa charter for health promotion

    Google Scholar 

  3. Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, Hinder S, Procter R, Shaw S (2018) Analysing the role of complexity in explaining the fortunes of technology programmes: empirical application of the NASSS framework. BMC Med 16(1):66. https://doi.org/10.1186/s12916-018-1050-6

    Article  Google Scholar 

  4. Greenhalgh T, Howick J, Maskrey N (2014) Evidence based medicine: a movement in crisis? BMJ 348:g3725. https://doi.org/10.1136/bmj.g3725

    Article  Google Scholar 

  5. Bhavnani SP, Sitapati AM (2019) Virtual care 2.0—a vision for the future of data-driven technology-enabled healthcare. Curr Treat Options Cardiovasc Med 21(5):21. https://doi.org/10.1007/s11936-019-0727-2

    Article  Google Scholar 

  6. Pritchard DE, Moeckel F, Villa MS, Housman LT, McCarty CA, McLeod HL (2017) Strategies for integrating personalized medicine into healthcare practice. Pers Med 14(2):141–152. https://doi.org/10.2217/pme-2016-0064

    Article  Google Scholar 

  7. Karakra A, Fontanili F, Lamine E, Lamothe J, Taweel A (2018) Pervasive computing integrated discrete event simulation for a hospital digital twin, pp 1–6. https://doi.org/10.1109/AICCSA.2018.8612796

    Book  Google Scholar 

  8. Berwick DM, Hackbarth AD (2012) Eliminating waste in US health care. JAMA 307(14):1513–1516. https://doi.org/10.1001/jama.2012.362

    Article  Google Scholar 

  9. Makary MA, Daniel M (2016) Medical error—the third leading cause of death in the US. BMJ 353:i2139. https://doi.org/10.1136/bmj.i2139

    Article  Google Scholar 

  10. C. I. f. H. Information (2018) National health expenditure trends, 1975 to 2018. https://www.cihi.ca/en/health-spending/2018/national-health-expenditure-trends

  11. O. E. Union (2018) Health at a glance Europe 2018: state of health in the EU Cycle, Paris. https://doi.org/10.1787/23056088

  12. O. f. N. Statistics (2019) Healthcare expenditure, UK Health Accounts: 2017. Office for National Statistics, 25/04/2019, p 27

    Google Scholar 

  13. P. D United Nations Department of Economic and Social Affairs (2017) World Population Ageing 2017. https://www.un.org/en/development/desa/population/theme/ageing/WPA2017.asp

  14. Bryant N, Spencer N, King A, Crooks P, Deakin J, Young S (2017) IoT and smart city services to support independence and wellbeing of older people, pp 1–6. https://doi.org/10.23919/SOFTCOM.2017.8115553

    Book  Google Scholar 

  15. W. H. Organisation (2008) Preventing chronic diseases: a vital Investment.https://apps.who.int/iris/bitstream/handle/10665/43314/9241563001_eng.pdf;jsessionid=F24F4FB0 22DCC5C9DCF70BAE5BA95C8D?sequence=1

  16. U. D. o. H. a. S. Care (2018) Policy Paper: the future of healthcare: our vision for digital, data and technology in health and care. D. o. H. a. S. Care (ed) UK Government

    Google Scholar 

  17. Sehrawat D, Gill NS (2018) Emerging trends and future computing technologies: a vision for smart environment. Int J Adv Res Comput Sci 9(2):839. https://doi.org/10.26483/ijarcs.v9i2.5838

    Article  Google Scholar 

  18. Gartner (2018) 5 Trends emerge in the gartner hype cycle for emerging technologies, 2018. ID G00363408, Gartner. https://www.gartner.com/document/3886564?ref=TypeAheadSearch&qid=808dc69ca889b4bd3fa85b2e3

  19. Rahman MA, Rashid MM, Hossain MS, Hassanain E, Alhamid MF, Guizani M (2019) Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart city. IEEE Access:1–1. https://doi.org/10.1109/ACCESS.2019.2896065

  20. Pacheco J, Zhu X, Badr Y, Hariri S (2017) Enabling risk management for smart infrastructures with an anomaly behavior analysis intrusion detection system, pp 324–328. https://doi.org/10.1109/FAS-W.2017.167

    Book  Google Scholar 

  21. Gambhir SS, Ge TJ, Vermesh O, Spitler R (2018) Toward achieving precision health. Sci Transl Med 10(430):eaao3612. https://doi.org/10.1126/scitranslmed.aao3612

    Article  Google Scholar 

  22. Lee I, Sokolsky O, Chen S, Hatcliff J, Jee E, Kim B, King A, Mullen-Fortino M, Park S, Roederer A, Venkatasubramanian KK (2012) Challenges and research directions in medical cyber–physical systems. Proc IEEE 100(1):75–90. https://doi.org/10.1109/JPROC.2011.2165270

    Article  Google Scholar 

  23. Laaki H, Miche Y, Tammi K (2019) Prototyping a digital twin for real time remote control over Mobile networks: application of remote surgery. IEEE Access 7:20325–20336. https://doi.org/10.1109/ACCESS.2019.2897018

    Article  Google Scholar 

  24. Liu Y, Zhang L, Yang Y, Zhou L, Ren L, Wang F, Liu R, Pang Z, Deen MJ (2019) A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 7:49088–49101. https://doi.org/10.1109/ACCESS.2019.2909828

    Article  Google Scholar 

  25. Iyawa GE, Herselman M, Botha A (2016) Digital health innovation ecosystems: from systematic literature review to conceptual framework. Proced Comput Sci 100:244–252. https://doi.org/10.1016/j.procs.2016.09.149

    Article  Google Scholar 

  26. Robinson L, Griffiths M, Wray J, Ure C, Stein-Hodgins JR, Shires G (2015) The use of digital health technology and social media to support breast screening. In: Digital mammography. Springer, pp 105–111. https://doi.org/10.1007/978-3-319-04831-4_13

  27. Mellodge P, Vendetti C (2011) Remotely monitoring a patient’s mobility: a digital health application. IEEE Potentials 30(2):33–38. https://doi.org/10.1109/MPOT.2010.939453

    Article  Google Scholar 

  28. Kostkova P (2015) Grand challenges in digital health. Front Public Health 3:134. https://doi.org/10.3389/fpubh.2015.00134

    Article  Google Scholar 

  29. W. T. Organisation (2016) Monitoring and evaluating digital health interventions: a practical guide to conducting research and assessment. ISBN 978–92–4-151176-6, Geneva. https://apps.who.int/iris/bitstream/handle/10665/252183/9789241511766-eng.pdf

  30. W. T. Organisation (2014) A universal truth: no health without a workforce.pdf. Geneva. https://www.who.int/workforcealliance/knowledge/resources/GHWA-a_universal_truth_ report.pdf?ua=1

  31. Terris M (1975) Evolution of public health and preventive medicine in the United States. Am J Public Health 65(2):161–169. https://doi.org/10.2105/AJPH.65.2.161

    Article  Google Scholar 

  32. Colijn C, Jones N, Johnston IG, Yaliraki S, Barahona M (2017) Toward precision healthcare: context and mathematical challenges. Front Physiol 8:136. https://doi.org/10.3389/fphys.2017.00136

    Article  Google Scholar 

  33. Carrasco-Ramiro F, Peiró-Pastor R, Aguado B (2017) Human genomics projects and precision medicine Gene Ther 24:551, 08/14/online. https://doi.org/10.1038/gt.2017.77

  34. Flores M, Glusman G, Brogaard K, Price ND, Hood L (2013) P4 medicine: how systems medicine will transform the healthcare sector and society. Pers Med 10(6):565–576. https://doi.org/10.2217/pme.13.57

    Article  Google Scholar 

  35. Tuegel EJ, Ingraffea AR, Eason TG, Spottswood SM (2011) Reengineering aircraft structural life prediction using a digital twin. Int J Aerosp Eng 2011:1–14. https://doi.org/10.1155/2011/154798

    Article  Google Scholar 

  36. Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in cps-based production systems. Proced Manuf 11:939–948. https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  37. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and US Air Force vehicles, p 1818. https://doi.org/10.2514/6.2012-1818

    Book  Google Scholar 

  38. Bruynseels K, Santoni de Sio F, van den Hoven J (2018) Digital twins in health care: ethical implications of an emerging engineering paradigm. Front Genet 9(31). https://doi.org/10.3389/fgene.2018.00031

  39. Gartner (2018) Hype cycle for emerging technologies, 2018. ID G00340159. https://www.gartner.com/document/3885468?qid=eaeac87a4acbfd43931fc95&ref=solrAll&refval= 224658212&toggle=1

  40. Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  41. Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94(9–12):3563–3576. https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  42. Cox WE (1967) Product life cycles as marketing models. J Bus 40(4):375–384

    Article  Google Scholar 

  43. Sacco M, Pedrazzoli P, Terkaj W (2010) VFF: virtual factory framework, pp 1–8. https://doi.org/10.1109/ICE.2010.7477041

    Book  Google Scholar 

  44. Rosen R, Von Wichert G, Lo G, Bettenhausen KD (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3):567–572. https://doi.org/10.1016/j.ifacol.2015.06.141

    Article  Google Scholar 

  45. Schluse M, Rossmann J (2016) From simulation to experimentable digital twins: Simulation-based development and operation of complex technical systems, pp 1–6. https://doi.org/10.1109/SysEng.2016.7753162

    Book  Google Scholar 

  46. Canedo A (2016) Industrial IoT lifecycle via digital twins, pp 1–1

    Google Scholar 

  47. Schroeder GN, Steinmetz C, Pereira CE, Espindola DB (2016) Digital twin data modeling with automationML and a communication methodology for data exchange. IFAC-PapersOnLine 49(30):12–17. https://doi.org/10.1016/j.ifacol.2016.11.115

    Article  Google Scholar 

  48. Smarslok B, Culler A, Mahadevan S (2012) Error quantification and confidence assessment of aerothermal model predictions for hypersonic aircraft, p 1817. https://doi.org/10.2514/6.2012-1817

    Book  Google Scholar 

  49. Bielefeldt B, Hochhalter J, Hartl D (2015) Computationally efficient analysis of SMA sensory particles embedded in complex aerostructures using a substructure approach, pp V001T02A007–V001T02A007. https://doi.org/10.1115/SMASIS2015-8975

    Book  Google Scholar 

  50. Qureshi B (2014) Towards a digital ecosystem for predictive healthcare analytics. In: Proceedings of the 6th international conference on Management of Emergent Digital EcoSystems, Buraidah, Al Qassim, Saudi Arabia, pp 34–41. https://doi.org/10.1145/2668260.2668286

    Chapter  Google Scholar 

  51. León MC, Nieto-Hipólito JI, Garibaldi-Beltrán J, Amaya-Parra G, Luque-Morales P, Magaña-Espinoza P, Aguilar-Velazco J (April 27, 2016) Designing a model of a digital ecosystem for healthcare and wellness using the business model canvas. J Med Syst 40(6):144. https://doi.org/10.1007/s10916-016-0488-3

    Article  Google Scholar 

  52. Pramanik MI, Lau RYK, Demirkan H, Azad MAK (2017) Smart health: Big data enabled health paradigm within smart cities. Expert Sys Appl 87:370–383. https://doi.org/10.1016/j.eswa.2017.06.027

    Article  Google Scholar 

  53. Huang G, Fang Y, Wang X, Pei Y, Horn B (2018) A survey on the status of smart healthcare from the universal village perspective, pp 1–6. https://doi.org/10.1109/UV.2018.8642125

    Book  Google Scholar 

  54. Haughey H, Epiphaniou G, al-Khateeb HM (2016) Anonymity networks and the fragile cyber ecosystem. Netw Secur 2016(3):10–18. https://doi.org/10.1016/S1353-4858(16)30028-9

    Article  Google Scholar 

  55. Boyes HA, Isbell R, Norris P, Watson T (2014) Enabling intelligent cities through cyber security of building information and building systems, pp 1–6. https://doi.org/10.1049/ic.2014.0046

    Book  Google Scholar 

  56. Augusto V, Murgier M, Viallon A (2018) A modelling and simulation framework for intelligent control of emergency units in the case of major crisis, pp 2495–2506. https://doi.org/10.1109/WSC.2018.8632438

    Book  Google Scholar 

  57. Chen M, Yang J, Zhou J, Hao Y, Zhang J, Youn C (2018) 5G-smart diabetes: toward personalized diabetes diagnosis with healthcare big data clouds. IEEE Commun Mag 56(4):16–23. https://doi.org/10.1109/MCOM.2018.1700788

    Article  Google Scholar 

  58. Oleshchuk V, Fensli R (2011) Remote patient monitoring within a future 5G infrastructure. Wirel Pers Commun 57(3):431–439. https://doi.org/10.1007/s11277-010-0078-5

    Article  Google Scholar 

  59. Mattos WD d, Gondim PRL (2016) M-Health solutions using 5G networks and M2M communications. IT Professional 18(3):24–29. https://doi.org/10.1109/MITP.2016.52

    Article  Google Scholar 

  60. Rahman MA, Hossain MS, Hassanain E, Muhammad G (2018) Semantic multimedia fog computing and IoT environment: sustainability perspective. IEEE Commun Mag 56(5):80–87. https://doi.org/10.1109/MCOM.2018.1700907

    Article  Google Scholar 

  61. Rahman MA, Hossain MS (2017) M-therapy: a multisensor framework for in-home therapy management: a social therapy of things perspective. IEEE Internet Things J 5(4):2548–2556. https://doi.org/10.1109/JIOT.2017.2776150

    Article  Google Scholar 

  62. Fortino G, Guerrieri A, Russo W, Savaglio C (2014) Integration of agent-based and cloud computing for the smart objects-oriented IoT, pp 493–498. https://doi.org/10.1109/CSCWD.2014.6846894

    Book  Google Scholar 

  63. Nastic S, Sehic S, Le D-H, Truong H-L, Dustdar S (2014) Provisioning software-defined IoT cloud systems, pp 288–295. https://doi.org/10.1109/FiCloud.2014.52

    Book  Google Scholar 

  64. Ma Y, Li G, Xie H, Zhang H (2018) City profile: using SMART data to create digital URBAN spaces. ISPRS Ann Photogramm Remote Sens Spati Infor Sci 4:75–82. https://doi.org/10.5194/isprs-annals-IV-4-W7-75-2018

    Article  Google Scholar 

  65. Orozco A, Pacheco J, Hariri S (2017) Anomaly behavior analysis for smart grid automation system, pp 1–7. https://doi.org/10.1109/ROPEC.2017.8261614

    Book  Google Scholar 

  66. Do Q, Martini B, Choo K-KR (2018) Cyber-physical systems information gathering: a smart home case study. Comput Netw 138:1–12. https://doi.org/10.1016/j.comnet.2018.03.024

    Article  Google Scholar 

  67. Ahmadi-Assalemi G, al-Khateeb H, Epiphaniou G, Cosson J, Jahankhani H, Pillai P (2019) Federated blockchain-based tracking and liability attribution framework for employees and cyber-physical objects in a smart workplace. https://doi.org/10.1109/ICGS3.2019.8688297

    Book  Google Scholar 

  68. al-Khateeb H, Epiphaniou G, Reviczky A, Karadimas P, Heidari H (2018) Proactive threat detection for connected cars using recursive Bayesian estimation. IEEE Sensors J 18(12):4822–4831. https://doi.org/10.1109/JSEN.2017.2782751

    Article  Google Scholar 

  69. Glaa B, Hammadi S, Tahon C (2006) Modeling the emergency path handling and emergency department simulation, pp 4585–4590. https://doi.org/10.1109/ICSMC.2006.384869

    Book  Google Scholar 

  70. Sinreich D, Marmor YN (2004) A simple and intuitive simulation tool for analyzing emergency department operations, pp 1994–2002. https://doi.org/10.1109/WSC.2004.1371561

    Book  Google Scholar 

  71. Kammoun A, Loukil T, Hachicha W (2014) The use of discrete event simulation in hospital supply chain management, pp 143–148. https://doi.org/10.1109/ICAdLT.2014.6864108

    Book  Google Scholar 

  72. Alwan A (2011) Global status report on noncommunicable diseases 2010. World Health Organization, Geneva. http://apps.who.int/iris/bitstream/handle/10665/44579/9789240686458_eng.pdf;jsessionid=1D70E16CE9E288647B273D604E1D8991?sequence=1

    Google Scholar 

  73. C. f. D. C. a. P (2019) Chronic diseases: the leading causes of death and disability in the United States. 01/08/2019. https://www.cdc.gov/chronicdisease/resources/infographic/chronic-diseases.htm

  74. Richard AA, Shea K (2011) Delineation of self-care and associated concepts. J Nurs Scholarsh 43(3):255–264. https://doi.org/10.1111/j.1547-5069.2011.01404.x

    Article  Google Scholar 

  75. Barnes C, Mercer G (2010) Exploring disability, 2nd edn, Cambridge, 2nd ed. Cambridge

    Google Scholar 

  76. W. H. Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines

    Google Scholar 

  77. Cohn S (2015) ‘Trust my doctor, trust my pancreas’: trust as an emergent quality of social practice. Philos Ethics Humanit Med 10(1):9. https://doi.org/10.1186/s13010-015-0029-6

    Article  Google Scholar 

  78. Gemmill M (2008) Research note: chronic disease management in Europe “employment, social affairs and equal opportunities” unit E1-social and demographic analysis. European Commission Directorate-General

    Google Scholar 

  79. Fuchs S, Henschke C, Blümel M, Busse R (2014) Disease management programs for type 2 diabetes in Germany: a systematic literature review evaluating effectiveness. Dtsch Arztebl Int 111(26):453. https://doi.org/10.3238/arztebl.2014.0453

    Article  Google Scholar 

  80. Gapp O, Schweikert B, Meisinger C, Holle R (2008) Disease management programmes for patients with coronary heart disease—an empirical study of German programmes. Health Policy 88(2–3):176–185. https://doi.org/10.1016/j.healthpol.2008.03.009

    Article  Google Scholar 

  81. Norris SL, Nichols PJ, Caspersen CJ, Glasgow RE, Engelgau MM, Jack L Jr, Isham G, Snyder SR, Carande-Kulis VG, Garfield S (2002) The effectiveness of disease and case management for people with diabetes: a systematic review. Am J Prev Med 22(4):15–38. https://doi.org/10.1016/S0749-3797(02)00423-3

    Article  Google Scholar 

  82. Kummar S, Williams PM, Lih C-J, Polley EC, Chen AP, Rubinstein LV, Zhao Y, Simon RM, Conley BA, Doroshow JH (2015) Application of molecular profiling in clinical trials for advanced metastatic cancers. JNCI: J Natl Cancer Inst 107(4). https://doi.org/10.1093/jnci/djv003

  83. Suite DH, La Bril R, Primm A, Harrison-Ross P (2007) Beyond misdiagnosis, misunderstanding and mistrust: relevance of the historical perspective in the medical and mental health treatment of people of color. J Natl Med Assoc 99(8):879–885

    Google Scholar 

  84. Bajramovic E, Waedt K, Ciriello A, Gupta D (2016) Forensic readiness of smart buildings: preconditions for subsequent cybersecurity tests, pp 1–6. https://doi.org/10.1109/ISC2.2016.7580754

    Book  Google Scholar 

  85. Skopik F, Settanni G, Fiedler R (2016) A problem shared is a problem halved: A survey on the dimensions of collective cyber defense through security information sharing. Comput Secur 60:154–176. https://doi.org/10.1016/j.cose.2016.04.003

    Article  Google Scholar 

  86. He H, Maple C, Watson T, Tiwari A, Mehnen J, Jin Y, Gabrys B (2016) The security challenges in the IoT enabled cyber-physical systems and opportunities for evolutionary computing & other computational intelligence, pp 1015–1021. https://doi.org/10.1109/CEC.2016.7743900

    Book  Google Scholar 

  87. Coppinger R (2016) Design through the looking glass [digital twins of real products]. Eng Technol 11(11):58–60. https://doi.org/10.1049/et.2016.1106

    Article  Google Scholar 

  88. Wurm J, Jin Y, Liu Y, Hu S, Heffner K, Rahman F, Tehranipoor M (2017) Introduction to cyber-physical system Security: a cross-layer perspective. IEEE Trans Multi-Scale Comput Syst 3(3):215–227. https://doi.org/10.1109/TMSCS.2016.2569446

    Article  Google Scholar 

  89. Wu W, Kang R, Li Z (2015) Risk assessment method for cyber security of cyber physical systems, pp 1–5. https://doi.org/10.1109/ICRSE.2015.7366430

    Book  Google Scholar 

  90. Shafi Q (2012) Cyber Physical Systems Security: A Brief Survey, pp 146–150. https://doi.org/10.1109/ICCSA.2012.36

    Book  Google Scholar 

  91. Gallagher S (2014) Photos of an NSA “upgrade” factory show Cisco router getting implant

    Google Scholar 

  92. Pagliery S (2015) Lenovo slipped ‘Superfish’ malware into laptops. CNN

    Google Scholar 

  93. Al Ameen M, Liu J, Kwak K (2012) Security and privacy issues in wireless sensor networks for healthcare applications. J Med Syst 36(1):93–101. https://doi.org/10.1007/s10916-010-9449-4

    Article  Google Scholar 

  94. Krombholz K, Hobel H, Huber M, Weippl E (2015) Advanced social engineering attacks. J Inform Secur Appl 22:113–122. https://doi.org/10.1016/j.jisa.2014.09.005

    Article  Google Scholar 

  95. Gupta BB, Tewari A, Jain AK, Agrawal DP (2017) Fighting against phishing attacks: state of the art and future challenges. Neural Comput Appl 28(12):3629–3654. https://doi.org/10.1007/s00521-016-2275-y

    Article  Google Scholar 

  96. Kammüller F, Nurse JRC, Probst CW (2016) Attack tree analysis for insider threats on the IoT using Isabelle, pp 234–246. https://doi.org/10.1007/978-3-319-39381-0_21

    Book  Google Scholar 

  97. Cheh C, Keefe K, Feddersen B, Chen B, Temple WG, Sanders WH (2017) Developing models for physical attacks in cyber-physical systems. In: Proceedings of the 2017 workshop on cyber-physical systems security and privaCy, Dallas, pp 49–55. https://doi.org/10.1145/3140241.3140249

  98. European Union Agency For Network And Information Security (ENISA) (2017) Baseline security recommendations for IoT in the context of critical information infrastructures. https://doi.org/10.2824/03228

  99. N. I. o. S. a. T. (NIST) (2016) NIST Special Publocation 800-183 Nentworks of ‘Things’. Department of Commerce, USA

    Google Scholar 

  100. U. D. o. H. Security (2016) Strategic principles for security the Internet of Things (IoT). US Homeland Security

    Google Scholar 

  101. U. S. D. o. H. a. H. S. F. a. D. A. F. C. f. D. a. a. R. Health (2018) Postmarket management of cybersecurity in medical devices

    Google Scholar 

  102. Internet of Things (IoT) Cybersecurity Improvement Act of 2017 Standard S. 1691, 2017–2018

    Google Scholar 

  103. E. g. o. E. i. S. a. N. T. t. t. E. Commission (2015) The ethical implications of new health technologies and citizen participation. Brussels. https://doi.org/10.2872/633988

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider Al-Khateeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmadi-Assalemi, G. et al. (2020). Digital Twins for Precision Healthcare. In: Jahankhani, H., Kendzierskyj, S., Chelvachandran, N., Ibarra, J. (eds) Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35746-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35746-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35745-0

  • Online ISBN: 978-3-030-35746-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics