Skip to main content

Landslide Monitoring System Through Wireless Sensor Network Using RTK Technique: Case of Study Basin of Loja City

  • Conference paper
  • First Online:
Information and Communication Technologies of Ecuador (TIC.EC) (TICEC 2019)

Abstract

The case of the study uses a designed remote landslide monitoring system with a Wireless Sensor Network (WSN), and the location of the study is the valley of the Loja city in Ecuador. Landslides occur in areas where there is a greater soil moisture accumulation, taking into account other intrinsic and extrinsic land factors such as vegetation cover, rain intensity, topology, and composition. Soil moisture (densitometric method), rainfall and soil displacement through georeferenced GPS (Global Position System) position are the environmental variables analyzed in this research. Using two GPS, Reach RTK-GNSS (Real-Time Kinematic-Global Navigation Satellite System) modules, with centimeter precision through the use of RTK technique, and by configuring one as a base station and the other as a rover (mobile point) the correlation position is improved. The measurements were compared between the rover and a millimeter professional equipment using DGPS (Differential Global Position System). Moreover, WSN is designed with a star topology network, establishing communication between gateway and node by means of XBee-Pro technology, and using the gateway as a coordinator element and using the node as a data acquisition element. However, for sending the information to an IoT (Internet of Things) platform on the cloud, mobile communication network over GPRS (General Packet Radio Service) to remote monitoring from any device with Internet access is utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations. https://www.un.org/sustainabledevelopment/es/. Accessed 10 May 2018

  2. United Nations. http://www.un.org/sustainabledevelopment/es/cities/. Accessed 26 July 2017

  3. Iturralde, M.: Protege a tu familia de derrumbes y deslizamientos. Prevención de desastres de origen geológico, La Habana, Cuba (2013)

    Google Scholar 

  4. Jiménez-Perálvarez, J.D., Irigaray, C., Chacón, J.: Análisis de la susceptibilidad a los movimientos de ladera mendiante un SIG en la cuenca vertiente al embalse de Rules, Granada, Universidad de Granada, España (2005)

    Google Scholar 

  5. Secretaría de Gestión de Riesgos: Escenario de probabilidad de generación de movimientos de masa. Ecuador (2016)

    Google Scholar 

  6. Secretaría de Gestión de Riesgos: Escenario de probabilidad de generación de inundaciones, Ecuador (2016)

    Google Scholar 

  7. Secretaría de Gestión de Riesgos: Informe de situación - 02/06/2017 Época lluviosa en Ecuador, Ecuador (2017)

    Google Scholar 

  8. Municipio de Loja: Plan de Desarrollo y Ordenamiento Territorial, Ecuador (2014)

    Google Scholar 

  9. González, F., Seco, R., Castellanos, T.: Análisis del peligro de deslizamientos. Estudio de caso: Sur de la ciudad de Loja, Provincia de Loja-Ecuador, Universidad de La Habana, Cuba (2011)

    Google Scholar 

  10. Tambo, W., Seco, R., Castellano, E.: Estudio del peligro de deslizamieno del norte de la ciudad de Loja. Provincia de Loja, Universidad de La Habana, Cuba (2011)

    Google Scholar 

  11. Valarezo, D., Mendieta, G., Quiñones, M.: Diseño e implementación de un sistema para el monitoreo en tiempo real de deslizamientos de tierra usando una red de sensores inalámbricos y plataformas de Internet de las Cosas, UTPL, Ecuador (2018)

    Google Scholar 

  12. Ramesh, M.V.: Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw. 13, 2–18 (2014). https://doi.org/10.1016/j.adhoc.2012.09.002

    Article  Google Scholar 

  13. Fosalau, C., Zet, C., Petrisor, D.: Implementation of a landslide monitoring system as a wireless sensor network. In: 2016 IEEE 7th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), pp. 1–6. IEEE, New York (2016). https://doi.org/10.1109/UEMCON.2016.7777813

  14. Anh, G., Chinh, N., Nghia, T., Duc-Tan, T.: Monitoring of landslides in mountainous regions based on FEM modelling and rain gauge measurements. Int. J. Electr. Comput. Eng. 6, 2106–2113 (2016). https://doi.org/10.11591/ijece.v6i5.pp2106-2113

    Article  Google Scholar 

  15. Chen, D., Liu, Z., Wang, L., Dou, M., Chen, J., Li, H.: Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems. Mobile Netw. Appl. 18(5), 651–663 (2013). https://doi.org/10.1007/s11036-013-0456-9

    Article  Google Scholar 

  16. Hyoung, K.: Development of wireless sensor node for landslide detection. Proc. Asia Pac. Adv. Netw. 42, 56–60 (2016)

    Google Scholar 

  17. Pucha, P., Zárate, B.: Variación temporal y espacial del contenido de humedad como factor desencadenante a un movimiento de masa, UTPL, Ecuador (2016)

    Google Scholar 

  18. Soto, J., Galve, J., Palenzuela, J.A., Azañón, J.M., Tamay, J., Irigaray, C.: A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides 14(6), 1929–1947 (2017). https://doi.org/10.1007/s10346-017-0830-y

    Article  Google Scholar 

  19. CNT E.P. Homepage. https://www.cnt.gob.ec/. Accessed 10 May 2017

  20. CLARO Homepage. http://www.claro.com.ec. Accessed 10 May 2017

  21. Movistar Homepage. https://www.movistar.com.ec/. Accessed 10 May 2017

  22. Irrometer: Sensor de Humedad del Suelo WATERMARK - Modelo 200SS, U.S.A. (2016)

    Google Scholar 

  23. Davis Instruments: User Manual, Rain Collector with Mountable Base, U.S.A. (2017)

    Google Scholar 

  24. EMLID Homepage. https://emlid.com/. Accessed 10 Aug 2017

  25. Jaramillo, M., Zárate, B.: Establecimiento y materialización de una red topográfica de alta precisión en la UTPL, UTPL, Ecuador (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío Valarezo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valarezo, D., Mendieta, G., Quiñones-Cuenca, M., Zarate, B., Quiñonez, V., Soto, J. (2020). Landslide Monitoring System Through Wireless Sensor Network Using RTK Technique: Case of Study Basin of Loja City. In: Fosenca C, E., Rodríguez Morales, G., Orellana Cordero, M., Botto-Tobar, M., Crespo Martínez, E., Patiño León, A. (eds) Information and Communication Technologies of Ecuador (TIC.EC). TICEC 2019. Advances in Intelligent Systems and Computing, vol 1099. Springer, Cham. https://doi.org/10.1007/978-3-030-35740-5_18

Download citation

Publish with us

Policies and ethics