Skip to main content

Dynamic Mode Decomposition—A Numerical Linear Algebra Perspective

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

Data-driven scenarios in analysis and modeling of complex dynamical systems pose formidable challenges to computational science and motivate development of new numerical methods with ever increasing level of sophistication and complexity. An excellent example is computational fluid dynamics (CFD), where the dynamic mode decomposition (DMD) and its enhancement, the sparsity promoting DMD (DMDSP) have emerged as tools of trade for analysis of flow field data, with a host of applications. The problems of high dimension, noisy data, theoretical foundation in connection with the Koopman operator and ergodic theory, and potential applicability in broad spectrum of engineering problems have triggered extensive research and resulted in many theoretical and computational advancements of the DMD framework. This chapter revisits the DMD from the core numerical linear algebra perspective. Recent results on improving numerical robustness and functionality of DMD are reviewed and supplemented with new insights. Further, a new variation of the algorithm is proposed and used as a case study for development of a numerical algorithm in the DMD framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both MATLAB and NumPy actually use LAPACK as a computing engine for most matrix operations, in particular for the SVD and computing eigenvalues and eigenvectors of general matrices.

  2. 2.

    In MATLAB, the function \(\texttt {sqrtm(.)}\) computes the matrix principal square root.

  3. 3.

    See Sect. 7.6, where we briefly discuss recently proposed scheme [22] that uses the inverse of \(\mathbb {V}_m\).

  4. 4.

    See [66] for a definition and basis properties of Krylov decomposition.

  5. 5.

    This is sometimes called mixed stability: backward error corresponds to slightly changed output.

  6. 6.

    For an earlier, extended version see [21].

  7. 7.

    In an example constructed by Kahan [47], the pivoting fails to reveal one small singular value.

References

  1. Anantharamu, S., Mahesh, K.: A parallel Dynamic Mode Decomposition algorithm using modified Full Orthogonalization Arnoldi for large sequential snapshots. ArXiv e-prints (2018)

    Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  3. Andrew, R., Dingle, N.: Implementing QR factorization updating algorithms on GPUs. Parallel Comput. 40(7), 161–172. http://www.sciencedirect.com/science/article/pii/S0167819114000337 (2014). https://doi.org/10.1016/j.parco.2014.03.003. (7th Workshop on Parallel Matrix Algorithms and Applications)

    Article  MathSciNet  Google Scholar 

  4. Arbabi, H., Mezić, I.: Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16(4), 2096–2126 (2017). https://doi.org/10.1137/17M1125236

    Article  MathSciNet  Google Scholar 

  5. Bagheri, S.: Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596–623 (2013). https://doi.org/10.1017/jfm.2013.249

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, E., Sastuba, M., Vogt, D., Jung, B., Amor, H.B.: Estimation of perturbations in robotic behavior using dynamic mode decomposition. Adv. Robot. 29(5), 331–343 (2015)

    Article  Google Scholar 

  7. Björck, A.: Numerical Methods in Matrix Computations. Springer, Berlin (2015)

    Book  Google Scholar 

  8. Brgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms. Springer Publishing Company, Incorporated, Berlin (2013)

    Book  Google Scholar 

  9. Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatialtemporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1–15. http://www.sciencedirect.com/science/article/pii/S0165027015003829 (2016). https://doi.org/10.1016/j.jneumeth.2015.10.010

    Article  Google Scholar 

  10. Businger, P.A., Golub, G.H.: Linear least squares solutions by Householder transformations. Numerische Mathematik 7, 269–276 (1965)

    Article  MathSciNet  Google Scholar 

  11. Cat Le Ngo, A., See, J., Chung-Wei Phan, R.: Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis & Application. ArXiv e-prints (2016)

    Google Scholar 

  12. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing QR factorisations. SIAM J. Matrix Anal. Appl. 15(2), 592–622 (1994)

    Article  MathSciNet  Google Scholar 

  13. Dawson, S.T.M., Hemati, M.S., Williams, M.O., Rowley, C.W.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57(3), 42 (2016). https://doi.org/10.1007/s00348-016-2127-7

    Article  Google Scholar 

  14. Demmel, J.: The geometry of iii-conditioning. J. Complex. 3(2), 201–229. http://www.sciencedirect.com/science/article/pii/0885064X87900276 (1987). https://doi.org/10.1016/0885-064X(87)90027-6

    Article  MathSciNet  Google Scholar 

  15. Demmel, J.: Accurate singular value decompositions of structured matrices. SIAM J. Matrix Anal. Appl. 21(2), 562–580 (1999)

    Article  MathSciNet  Google Scholar 

  16. Demmel, J., Grigori, L., Gu, M., Xiang, H.: Communication avoiding rank revealing qr factorization with column pivoting. SIAM J. Matrix Anal. Appl. 36(1), 55–89 (2015). https://doi.org/10.1137/13092157X

    Article  MathSciNet  MATH  Google Scholar 

  17. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal parallel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–A239 (2012). https://doi.org/10.1137/080731992

    Article  MathSciNet  Google Scholar 

  18. Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., Drmač, Z.: Computing the singular value decomposition with high relative accuracy. Lin. Alg. Appl. 299, 21–80 (1999)

    Article  MathSciNet  Google Scholar 

  19. Drmač, Z.: Algorithm 977: A QR–preconditioned QR SVD method for computing the svd with high accuracy. ACM Trans. Math. Softw. 44(1), 11:1–11:30 (2017). https://doi.org/10.1145/3061709

    Article  MathSciNet  Google Scholar 

  20. Drmač, Z., Bujanović, Z.: On the failure of rank revealing QR factorization software - a case study. ACM Trans. Math. Softw. 35(2), 1–28 (2008)

    Article  MathSciNet  Google Scholar 

  21. Drmač, Z., Mezić, I., Mohr, R.: Data driven modal decompositions: analysis and enhancements (2017). arXiv:1708.02685

  22. Drmač, Z., Mezić, I., Mohr, R.: Data driven Koopman spectral analysis in Vandermonde-Cauchy form via the DFT: numerical method and theoretical insights. SIAM J. Sci. Comput. 41(5), A3118–A3151 (2018). arXiv:1808.09557

    Article  MathSciNet  Google Scholar 

  23. Drmač, Z., Mezić, I., Mohr, R.: Data driven modal decompositions: analysis and enhancements. SIAM J. Sci. Comput. 40(4), A2253–A2285 (2018). https://doi.org/10.1137/17M1144155

    Article  MathSciNet  MATH  Google Scholar 

  24. Drmač, Z., Mezić, I., Mohr, R.: On least squares problems with certain Vandermonde–Khatri–Rao structure with applications to DMD (2018). arXiv:1811.12562

  25. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: I. SIAM J. Matrix Anal. Appl. 29(4), 1322–1342 (2008)

    Article  MathSciNet  Google Scholar 

  26. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: II. SIAM J. Matrix Anal. Appl. 29(4), 1343–1362 (2008)

    Article  MathSciNet  Google Scholar 

  27. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936). https://doi.org/10.1007/BF02288367

    Article  MATH  Google Scholar 

  28. Eisenstat, S., Ipsen, I.: Relative perturbation techniques for singular value problems. SIAM J. Numer. Anal. 32(6), 1972–1988 (1995)

    Article  MathSciNet  Google Scholar 

  29. de la Fraga, L.G.: A very fast procedure to calculate the smallest singular value. In: 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), pp. 1–4 (2015). https://doi.org/10.1109/ICAPR.2015.7050656

  30. Gautschi, W.: Optimally conditioned Vandermonde matrices. Numerische Mathematik 24(1), 1–12 (1975). https://doi.org/10.1007/BF01437212

    Article  MathSciNet  MATH  Google Scholar 

  31. Gautschi, W.: How (un)stable are Vandermonde systems? In: R. Wong (ed.) Asymptotic and Computational Analysis. Lecture Notes in Pure and Applied Mathematics, vol. 124, pp. 193–210 (1990)

    Google Scholar 

  32. Ghosal, S., Ramanan, V., Sarkar, S., Chakravarthy, S., Sarkar, S.: Detection and analysis of combustion instability from hi-speed flame images using dynamic mode decomposition. In: ASME. Dynamic Systems and Control Conference, vol. 1 (2016). https://doi.org/10.1115/DSCC2016-9907

  33. Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014. http://www.nature.com/nature/journal/v457/n7232/full/nature07634.html (2009). https://doi.org/10.1038/nature07634

    Article  Google Scholar 

  34. Golub, G.H., Klema, V.C., Stewart, G.W.: Rank degeneracy and least squares problems. Technical Report CS-TR-76-559, Stanford, CA, USA (1976)

    Google Scholar 

  35. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)

    Article  MathSciNet  Google Scholar 

  36. Hammarling, S., Lucas, C.: Updating th QR factorization and the least squares problem. Technical Report MIMS EPrint: 2008.111, University of Manchester (2008)

    Google Scholar 

  37. Higham, D.J.: Condition numbers and their condition numbers. Linear Algebr. Appl. 214, 193–213. http://www.sciencedirect.com/science/article/pii/0024379593000669 (1995). https://doi.org/10.1016/0024-3795(93)00066-9

    Article  MathSciNet  Google Scholar 

  38. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)

    Google Scholar 

  39. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2 edn. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511919701

  40. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  41. Jia, Z.: Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems. Linear Algebr. Appl. 259, 1–23. http://www.sciencedirect.com/science/article/pii/S0024379596002388 (1997). https://doi.org/10.1016/S0024-3795(96)00238-8

    Article  MathSciNet  Google Scholar 

  42. Jia, Z.: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm. Linear Algebr. Appl. 287(1–3), 191–214. http://www.sciencedirect.com/science/article/pii/S0024379598101970 (1999). https://doi.org/10.1016/S0024-3795(98)10197-0

    Article  MathSciNet  Google Scholar 

  43. Jia, Z.: Residuals of refined projection methods for large matrix eigenproblems. Comput. Math. Appl. 41(7), 813–820. http://www.sciencedirect.com/science/article/pii/S0898122100003217 (2001). https://doi.org/10.1016/S0898-1221(00)00321-7

    Article  MathSciNet  Google Scholar 

  44. Jia, Z.: Some theoretical comparisons of refined Ritz vectors and Ritz vectors. Sci. China Ser. Math. 47, 222–233 (2004)

    Article  MathSciNet  Google Scholar 

  45. Jia, Z., Stewart, G.W.: An analysis of the Rayleigh-Ritz method for approximating eigenspaces. Math. Comput. 70(234), 637–647 (2001). https://doi.org/10.1090/S0025-5718-00-01208-4

    Article  MathSciNet  MATH  Google Scholar 

  46. Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26(2), 024103 (2014)

    Article  Google Scholar 

  47. Kahan, W.: Numerical linear algebra. Can. Math. Bull. 9(6), 757–801 (1965)

    MATH  Google Scholar 

  48. Kalashnikova, I., Arunajatesan, S., Barone, M.F., van Bloemen Waanders, B.G., Fike, J.A.: Reduced order modeling for prediction and control of large–scale systems. Sandia Report SAND2014–4693, Sandia National Laboratories (2014)

    Google Scholar 

  49. Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM-Society for Industrial and Applied Mathematics, USA (2016)

    Google Scholar 

  50. Lele, S.K., Nichols, J.W.: A second golden age of aeroacoustics? Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 372(2022). http://rsta.royalsocietypublishing.org/content/372/2022/20130321 (2014). https://doi.org/10.1098/rsta.2013.0321

    Article  Google Scholar 

  51. Li, R.: Relative perturbation theory: Ii. eigenspace and singular subspace variations. SIAM J. Matrix Anal. Appl. 20(2), 471–492 (1998). https://doi.org/10.1137/S0895479896298506

    Article  MathSciNet  Google Scholar 

  52. Mann, J., Kutz, J.N.: Dynamic Mode Decomposition for Financial Trading Strategies. ArXiv e-prints (2015)

    Google Scholar 

  53. The Mathworks, Inc., Natick, Massachusetts: MATLAB version 9.2.0.556344 (R2017a) (2017)

    Google Scholar 

  54. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11(1), 50 (1960). https://doi.org/10.1093/qmath/11.1.50

    Article  MathSciNet  MATH  Google Scholar 

  55. Nguyen, H.D., Demmel, J.: Reproducible tall-skinny QR. In: 2015 IEEE 22nd Symposium on Computer Arithmetic, pp. 152–159 (2015). https://doi.org/10.1109/ARITH.2015.28

  56. Oliphant, T.: Guide to NumPy. Trelgol Publishing (2006)

    Google Scholar 

  57. Pan, V.Y.: How bad are Vandermonde matrices? ArXiv e-prints http://adsabs.harvard.edu/abs/2015arXiv150402118P (2015)

  58. Proctor, J.L., Eckhoff, P.A.: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition. Int. Health 7(2), 139–145 (2015). https://doi.org/10.1093/inthealth/ihv009

    Article  Google Scholar 

  59. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifur. Chaos Appl. Sci. Eng. 15(3), 997–1013 (2005)

    Article  MathSciNet  Google Scholar 

  60. Rowley, C.W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using pod and galerkin projection. Phys. D: Nonlinear Phenom 189(1), 115–129. http://www.sciencedirect.com/science/article/pii/S0167278903003841 (2004). https://doi.org/10.1016/j.physd.2003.03.001

    Article  MathSciNet  Google Scholar 

  61. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  Google Scholar 

  62. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28. https://www.cambridge.org/core/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4 (2010). https://doi.org/10.1017/S0022112010001217

    Article  MathSciNet  Google Scholar 

  63. Schmid, P.J., Sesterhenn, J.: Dynamic mode decomposition of numerical and experimental data. In: Sixty-First Annual Meeting of the APS Division of Fluid Dynamics. San Antonio, Texas, USA (2008)

    Google Scholar 

  64. Serre, G., Lafon, P., Gloerfelt, X., Bailly, C.: Reliable reduced-order models for time-dependent linearized Euler equations. J. Comput. Phys. 231(15), 5176–5194 (2012)

    Article  MathSciNet  Google Scholar 

  65. van der Sluis, A.: Condition numbers and equilibration of matrices. Numerische Mathematik 14, 14–23 (1969)

    Article  MathSciNet  Google Scholar 

  66. Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)

    Article  MathSciNet  Google Scholar 

  67. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic, Cambridge (1990)

    MATH  Google Scholar 

  68. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On Dynamic Mode Decomposition: Theory and Applications. ArXiv e-prints (2013)

    Google Scholar 

  69. Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. http://www.uni-graz.at/imawww/volkwein/POD.pdf (2011)

  70. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015). https://doi.org/10.1007/s00332-015-9258-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the DARPA Contract HR0011-16-C-0116 “On a Data-Driven, Operator-Theoretic Framework for Space–Time Analysis of Process Dynamics” and the DARPA Contract HR0011-18-9-0033 “The Physics of Artificial Intelligence”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Drmač .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drmač, Z. (2020). Dynamic Mode Decomposition—A Numerical Linear Algebra Perspective. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_7

Download citation

Publish with us

Policies and ethics