Skip to main content

Koopman Framework for Nonlinear Estimation

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

In this chapter, we overview a new approach for nonlinear estimation based on Koopman operator-theoretic framework. We exploit Koopman eigenfunctions to create a nonlinear embedding/lifting of underlying nonlinear dynamics to synthesize observer forms (which we call Koopman observer form (KOF)) which enables the use of well-known estimation techniques developed for linear/bilinear systems in context of more general nonlinear systems. Furthermore, we present an extension of this framework for nonlinear constrained state estimation (CSE) with non-convex state constraints. Exploiting the KOF-based representation, we show that under certain conditions the CSE problem can be transformed into a higher dimensional but convex problem. We present a receding horizon estimation formulation based on this transformation, which could provide computational benefit in real-time applications. We also analyze system theoretic properties of KOF in relation to the original nonlinear system, and establish relationship between the original nonlinear estimation problem and the Koopman transformed problem. Finally, we illustrate our approach on a few examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbaszadeh, M., Marquez, H.J.: A robust observer design method for continuous-time Lipschitz nonlinear systems. In: IEEE CDC (2006)

    Google Scholar 

  2. Açıkmeşe, B., Carson, J.M., Blackmore, L.: Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Trans. Control Syst. Technol. 21(6), 2104–2113 (2013)

    Article  Google Scholar 

  3. Bao, X., Sahinidis, N., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. J. Math. Program. Ser. B 129(1), 129–157 (2011)

    Article  MathSciNet  Google Scholar 

  4. Besancon, G.: Nonlinear Observers and Applications. Lecture Notes in Control and Information Sciences, vol. 363. Springer, Berlin (2007)

    Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. SIAM, New York (1995)

    Google Scholar 

  7. Budisic, M., Mohr, R.M., Mezic, I.: Applied koopmanism. Chaos 22(4), 047510 (2012)

    Article  MathSciNet  Google Scholar 

  8. Carleman, T.: Application de la théories des équations intégrales linéaires aux systémes déquations différentielles non linéaires. Acta Math. 59, 63–87 (1932)

    Article  MathSciNet  Google Scholar 

  9. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Nonlinear Model Predictive Control, pp. 391–417. Springer, Berlin (2009)

    Chapter  Google Scholar 

  10. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  11. Domahidi, A.: Forces: fast optimization for real-time control on embedded systems. http://forces.ethz.ch (2012)

  12. Elliott, D.: Bilinear Control Systems: Matrices in Action. Springer, Berlin (2009)

    Chapter  Google Scholar 

  13. Gauthier, J., Kupka, A.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Grasselli, O.M., Isidori, A.: Deterministic state reconstruction and reachability of bilinear processes. In: IEEE Joint Automatic Control Conference. IEEE, New York (1977)

    Google Scholar 

  15. Hermann, R., Krener, A.J.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5) (1977)

    Article  MathSciNet  Google Scholar 

  16. Juang, J.N., Lee, C.H.: Continuous-time bilinear system identification using single experiment with multiple pulses. Nonlinear Dyn. 69(3), 1009–1021 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kang, W., Krener, A.J., Xiao, M., Xu, L.: A Survey of Observers for Nonlinear Dynamical Systems. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. II. Springer, Berlin (2013)

    Google Scholar 

  18. Keller, H.: Nonlinear observer design by transformation into a generalized observer canonical form. Int. J. Control 46(6), 1915–1930 (1987)

    Article  MathSciNet  Google Scholar 

  19. Kelman, A., Borrelli, F.: Bilinear model predictive control of a hvac system using sequential quadratic programming. IFAC Proc. 44(1), 9869–9874 (2011)

    Article  Google Scholar 

  20. Korda, M., Mezic, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160

    Article  MathSciNet  Google Scholar 

  21. Kowalski, K., Steeb, W.H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific Publishing Co. Pte. Ltd., Singapore (1991)

    Google Scholar 

  22. Krener, A.J.: Bilinear and nonlinear realizations of input output maps. SIAM J. Control Optim. 13, 827–834 (1975)

    Article  MathSciNet  Google Scholar 

  23. Kühl, P., Diehl, M., Kraus, T., Schlöder, J.P., Bock, H.G.: A real-time algorithm for moving horizon state and parameter estimation. Comput. Chem. Eng. 35(1), 71–83 (2011)

    Article  Google Scholar 

  24. Liu, X., Lu, P.: Solving nonconvex optimal control problems by convex optimization. J. Guid. Control Dyn. 37(3), 750–765 (2014)

    Article  Google Scholar 

  25. Mao, Y., Dueri, D., Szmuk, M., Açıkmeşe, B.: Successive convexification of non-convex optimal control problems with state constraints (2017). arXiv:1701.00558

  26. Mao, Y., Szmuk, M., Açıkmeşe, B.: Successive convexification of non-convex optimal control problems and its convergence properties. In: IEEE 55th Conference on Decision and Control, pp. 3636–3641. IEEE, Las Vegas (2016)

    Google Scholar 

  27. Mauroy, A., Mezic, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016)

    Article  MathSciNet  Google Scholar 

  28. Mezic, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 357–378 (2012)

    Article  MathSciNet  Google Scholar 

  29. Misawa, E.A., Hedrick, J.K.: Nonlinear observers: a state-of-the-art survey. J. Dyn. Syst. Meas. Control 111(3), 344–352 (1989)

    Article  Google Scholar 

  30. Mohr, R., Mezic, I.: Construction of eigenfunctions for scalar-type operators via Laplace averages with connections to the Koopman operator (2014). arXiv:1403.6559

  31. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23(4), 667–682 (1999)

    Article  Google Scholar 

  32. Nijmeijer, H., Fossen, T.I.: New Directions in Nonlinear Observer Design, vol. 244. Springer, Berlin (1999)

    Google Scholar 

  33. Pertew, A.M., Marquez, H.J., Zhao, Q.: H infinity observer design for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 51(7), 1211–1216 (2006)

    Article  Google Scholar 

  34. Phan, M.Q., Shi, Y., Betti, R., Longman, R.W.: Discrete-time bilinear representation of continuous-time bilinear state-space models. Adv. Astronaut. Sci. 143, 571–589 (2012)

    Google Scholar 

  35. Phanomchoeng, G., Rajamani, R.: Observer design for Lipschitz nonlinear systems using Riccati equations. In: Proceedings of the 2010 American Control Conference, pp. 6060–6065 (2010)

    Google Scholar 

  36. Raghavan, S., Hedrick, J.K.: Observer design for a class of nonlinear systems. Int. J. Control 59(2), 515–528 (1994)

    Article  MathSciNet  Google Scholar 

  37. Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 43(3), 397–401 (1998)

    Article  MathSciNet  Google Scholar 

  38. Rao, C.V., Rawlings, J.B., Lee, J.H.: Constrained linear state estimation-a moving horizon approach. Automatica 37(10), 1619–1628 (2001)

    Article  Google Scholar 

  39. Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003)

    Article  MathSciNet  Google Scholar 

  40. Respondek, W.: Introduction to Geometric Nonlinear Control; Linearization, Observability, Decoupling. Lectures Given at the Summer School on Mathematical Control Theory. ICTP, Trieste (2001)

    MATH  Google Scholar 

  41. Rugh, W.J.: Nonlinear System Theory: The Volterra/Wiener Approach. Johns Hopkins University Press, Baltimore (1981)

    Google Scholar 

  42. Surana, A., Williams, M.O., Morari, M., Banaszuk, A.: Koopman operator framework for constrained state estimation. In: IEEE 56th Conference on Decision and Control, Melbourne, pp. 94–101 (2017)

    Google Scholar 

  43. Surana, A.: Koopman operator framework for observer synthesis for input-output nonlinear systems with control-affine inputs. In: IEEE 55th Conference on Decision and Control (2016)

    Google Scholar 

  44. Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman Operator framework. IFAC-PapersOnLine 49(18), 716–723 (2016)

    Article  Google Scholar 

  45. Tenny, M.J., Rawlings, J.B.: Efficient moving horizon estimation and nonlinear model predictive control. In: American Control Conference, pp. 4475–4480. Anchorage (2002)

    Google Scholar 

Download references

Acknowledgements

The funding provided by UTRC is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Surana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 United Technologies Research Center

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surana, A. (2020). Koopman Framework for Nonlinear Estimation. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_3

Download citation

Publish with us

Policies and ethics