Thermodynamics of Biological Phenomena

Part of the Scientific Computation book series (SCIENTCOMP)


This chapter aims to discuss the application of the statistical mechanics (or the so-called statistical thermodynamics) in understanding biological phenomena, based on the theoretical framework introduced by Lazaridis and Karplus (2003).


  1. Anfinsen, C.B., Scheraga, H.A.: Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205–300 (1975)CrossRefGoogle Scholar
  2. Baker, D.: Metastable states and folding free energy barriers. Nat. Struct. Biol. 5, 1021–1024 (1998)CrossRefGoogle Scholar
  3. Baker, D., Agard, D.A.: Kinetics versus thermodynamics in protein folding. Biochemistry 33, 7505–7509 (1994)CrossRefGoogle Scholar
  4. Bartels, C., Karplus, M.: Probability distributions for complex systems: adaptive umbrella sampling of the potential energy. J. Phys. Chem. B 102, 865–880 (1998)CrossRefGoogle Scholar
  5. Ben-Naim, A.: Standard thermodynamics of transfer. Uses and misuses. J. Phys. Chem. 82, 792–803 (1978)CrossRefGoogle Scholar
  6. Beveridge, D.L., DiCapua, F.M.: Free energy via molecular simulation. Ann. Rev. Biophys. 18, 431–492 (1989)CrossRefGoogle Scholar
  7. Brooks, B.R., Brooks, C.L., MacKerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)Google Scholar
  8. Dinner, A.R., Karplus, M.: A metastable state in folding simulations of a protein model. Nat. Struct. Biol. 5, 236–241 (1998)CrossRefGoogle Scholar
  9. Ernst, J.A., Clubb, R.T., Zhou, H.Z., Gronenborn, A.M., Clore, G.M.: Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science 267, 1813–1816 (1995)ADSCrossRefGoogle Scholar
  10. Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The energy landscape and motions of proteins. Science 254, 1598–1603 (1991)ADSCrossRefGoogle Scholar
  11. Goldberg, M.E.: The second translation of the genetic message: protein folding and assembly. TIBS 10, 388–391 (1985)Google Scholar
  12. Halle, B., Andersson, T., Forsen, S., Lindman, B.: Protein hydration from water oxygen-17 magnetic relaxation. J. Am. Chem. Soc. 103, 500–508 (1981)CrossRefGoogle Scholar
  13. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Academic Press, London (1986)zbMATHGoogle Scholar
  14. Hirata, F., Rossky, P.J.: An extended RISM equation for molecular polar fluids. Chem. Phys. Lett. 83, 329–334 (1981)ADSCrossRefGoogle Scholar
  15. Jain, M.K.: Introduction to Biological Membranes. Wiley-Interscience, New York (1988)Google Scholar
  16. Kollman, P.A.: Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93, 2395–2418 (1993)CrossRefGoogle Scholar
  17. Lazaridis, T.: Inhomogeneous fluid approach to solvation thermodynamics 2. Application to simple fluid. J. Phys. Chem. 102, 3542–3550 (1998a)Google Scholar
  18. Lazaridis, T.: Inhomogeneous fluid approach to solvation thermodynamics 1. Theory. J. Phys. Chem. 102, 3531–3541 (1998b)CrossRefGoogle Scholar
  19. Lazaridis, T.: Solvent reorganisation energy and entropy in hydrophobic hydration. J. Phys. Chem. B 104, 4964–4979 (2000)CrossRefGoogle Scholar
  20. Lazaridis, T.: Solvent size versus cohesive energy density as the origin of hydrophobicity. Acc. Chem. Res. 34, 931–937 (2001)CrossRefGoogle Scholar
  21. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35, 133–152 (1999)CrossRefGoogle Scholar
  22. Lazaridis, T., Karplus, M.: Thermodynamics of protein folding: a microscopic view. Biophys. Chem. 100, 367–395 (2003)CrossRefGoogle Scholar
  23. Lazaridis, T., Paulaitis, M.E.: Entropy of hydrophobic hydration: a new statistical mechanical formulation. J. Phys. Chem. 96, 3847–3855 (1992)CrossRefGoogle Scholar
  24. Lazaridis, T., Paulaitis, M.E.: Simulation studies of the hydration entropy of simple hydrophobic solutes. J. Phys. Chem. 98, 635–642 (1994)CrossRefGoogle Scholar
  25. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L. Jr., Evanseck, J.D., Field, M.J., Fischer, S., Al Gao, J., Guo, H., Ha, S., McCarthy, D.J., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Toux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Kuczera, J.W., Yin, D., Karplus, M.: All atom empirical potential for molecular modelling and dynamics studies of protein. J. Phys. Chem. B 102, 3586–3616 (1998)Google Scholar
  26. Matubayasi, N., Reed, L.H., Levy, R.M.: Thermodynamics of the hydration shell 1. Excess energy of a hydrophobic solute. J. Phys. Chem. 98, 10640–10649 (1994)Google Scholar
  27. McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)zbMATHGoogle Scholar
  28. Otting, G., Liepinsh, E., Wüthrich, K.: Protein hydration in aqueous solution. Science 254, 974–980 (1991)ADSCrossRefGoogle Scholar
  29. Pettitt, B.M., Rossky, P.J.: Alkali halides in water: ion-solvent correlations and ion-ion potentials of mean force at infinity dilution. J. Chem. Phys. 84, 5836–5844 (1986)ADSCrossRefGoogle Scholar
  30. Reiss, H.: Scaled particle methods in the statistical thermodynamics of fluids. Adv. Chem. Phys. 9, 1–84 (1965)Google Scholar
  31. Wetlaufer, D.B., Ristow, S.S.: Acquisition of three-dimensional structure of proteins. Annu. Rev. Biochem. 42, 135–158 (1973)CrossRefGoogle Scholar
  32. Yu, H.A., Karplus, M.: A thermodynamic analysis of solvation. J. Chem. Phys. 89, 2366–2379 (1988)ADSCrossRefGoogle Scholar
  33. Zotin, A.I.: Thermodynamic Aspects of Developmental Biology. Monogr. Dev. Biol., 5:1–59 (1972)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer EngineeringInternational Balkan UniversitySkopjeNorth Macedonia
  2. 2.Advanced Computing Research CenterUniversity of New York TiranaTiranaAlbania

Personalised recommendations