Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1401 Accesses

Abstract

In this chapter, we will discuss numerical integrator algorithms used for solving differential equations used in molecular dynamics simulations. In particular, we will propose different numerical integrator algorithms, which satisfy time reversibility or symplectic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    MATH  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1988)

    Google Scholar 

  • Barth, E., Schlick, T.: Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys. 109(5), 1617–1632 (1998a)

    Google Scholar 

  • Barth, E., Schlick, T.: Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys. 109(5), 1633–1642 (1998b)

    Google Scholar 

  • Bishop, T.C., Skeel, R.D., Schulten, K.: Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. J. Comput. Chem. 18(14), 1785–1791 (1997)

    Article  Google Scholar 

  • Creutz, M., Goksch, A.: Higher-order hybrid Monte-Carlo algorithms. Phys. Rev. Lett. 63, 9–12 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, San Francisco (2002)

    MATH  Google Scholar 

  • Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985b)

    Article  ADS  Google Scholar 

  • Izaguirre, J.A., Catarello, D.P., Wozniak, J.M., Skeel, R.D.: Langevin stabilization of molecular dynamics. J. Chem. Phys. 114(5), 2090–2098 (2001)

    Article  ADS  Google Scholar 

  • Kamberaj, H., Low, R.J., Neal, M.P.: Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. J. Chem. Phys. 122(22), 224114 (2005)

    Article  ADS  Google Scholar 

  • Leimkuhler, B.J., Reich, S.: Geometric Numerical Methods for Hamiltonian Mechanics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Ma, Q., Izaguirre, J.A.: Targeted mollified impulse: a multi scale stochastic integrator for long molecular dynamics simulations. Multiscale Model. Simul. 2(1), 1–21 (2003)

    Article  MathSciNet  Google Scholar 

  • Ma, Q., Izaguirre, J.A., Skeel, R.D.: Verlet-I/r-RESPA/Impulse is limited by nonlinear instabilities. SIAM J. Sci. Comput. 24, 1951–1973 (2003)

    Article  MathSciNet  Google Scholar 

  • Martyna, G.J., Tuckerman, M., Tobias, D.J., Klein, M.L.: Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87(5), 1117–1157 (1996)

    Article  ADS  Google Scholar 

  • Minary, P., Tuckerman, M.E., Martyna, G.J.: Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. Phys. Rev. Lett. 93, (150201-4) (2004)

    Google Scholar 

  • Nosé, S.: A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 (1984a)

    Article  ADS  Google Scholar 

  • Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984b)

    Article  ADS  Google Scholar 

  • Raedt, H.D., Raedt, B.D.: Applications of the generalized Trotter formula. Phys. Rev. A 28(6), 3575 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Schlick, T., Mandziuk, M., Skeel, R.D., Srinivas, K.: Nonlinear resonance artefacts in molecular dynamics simulations. J. Comput. Phys. 140(1), 1–29 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Skeel, R.D., Zhang, G., Schlick, T.: A family of symplectic integrators: stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput. 18(1), 203–222 (1997)

    Article  MathSciNet  Google Scholar 

  • Strang, G.: On the construction and comparison of different schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  • Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • Takahashi, M., Imada, M.: Monte Carlo calculation of quantum systems. II. Higher order correction. J. Phys. Soc. Jpn. 53, 3765–3769 (1984)

    ADS  Google Scholar 

  • Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  Google Scholar 

  • Tuckerman, M., Parrinello, M.: Integrating the Car-Parrinello equations. I. Basic integration techniques. J. Chem. Phys. 101(2), 1302 (1994)

    Google Scholar 

  • Tuckerman, M.E., Berne, B.J.: Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys. 94, 6811 (1991a)

    Article  ADS  Google Scholar 

  • Tuckerman, M.E., Berne, B.J.: Molecular dynamics in systems with multiple time scales: Systems with stiff and soft degrees of freedom and with short and long range forces. J. Chem. Phys. 95, 8362 (1991b)

    Article  ADS  Google Scholar 

  • Tuckerman, M.E., Martyna, G.J.: Understanding modern molecular dynamics: Techniques and Applications. J. Phys. Chem. B 104, 159–178 (2000)

    Article  Google Scholar 

  • Tuckerman, M.E., Berne, B.J., Rossi, A.: Molecular dynamics algorithm for multiple time scales: Systems with disparate masses. J. Chem. Phys. 94, 1465 (1991)

    Article  ADS  Google Scholar 

  • Tuckerman, M.E., Martyna, G.J., Berne, B.J.: Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys. 93, 1287 (1990)

    Article  ADS  Google Scholar 

  • Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Reversible multiple time step scale molecular dynamics. J. Chem. Phys. 97(3), 1990–2001 (1992)

    Article  ADS  Google Scholar 

  • Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)

    MATH  Google Scholar 

  • Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2020). Symplectic and Time Reversible Integrator. In: Molecular Dynamics Simulations in Statistical Physics: Theory and Applications. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-35702-3_11

Download citation

Publish with us

Policies and ethics