Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1339 Accesses

Abstract

In this chapter, we will introduce some practical aspects of molecular dynamics simulations, such as designing the constraints (e.g., SHAKE), periodic boundary conditions, spherical cutoffs, treatment of the long-range interactions (in particular, electrostatic interactions), and identifying the equilibrium states of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    MATH  Google Scholar 

  • Brooks, B.R., Brooks, C.L., MacKerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Google Scholar 

  • Cheatham III, T.E., Miller, J.L., Fox, T., Darden, T.A., Kollman, P.A.: Molecular dynamics simulations on solvated biomolecular systems: the particle mesh ewald method leads to stable trajectories of DNA, RNA and proteins. J. Am. Chem. Soc. 117, 4193–4194 (1995)

    Article  Google Scholar 

  • Darden, T., York, D., Perdersen, L.: Particle-mesh Ewald: an \(n\log n\) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Google Scholar 

  • Darden, T.A., Perera, L., Li, L., Pedersen, L.: New tricks for modellers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Struct. Folding Des. 7, R55–R60 (1999)

    Article  Google Scholar 

  • Deserno, M., Holm, C.: How to mesh up Ewald sums. I A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678–7693 (1998a)

    Google Scholar 

  • Deserno, M., Holm, C.: How to mesh up Ewald sums. II An accurate error estimate for the particle-particle-particle-mesh algorithm. J. Chem. Phys. 109, 7694–7701 (1998b)

    Google Scholar 

  • Ding, H., Karasawa, N., Goddard III, W.A.: The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cell. Chem. Phys. Lett. 196, 6–10 (1992)

    Article  ADS  Google Scholar 

  • Ewald, P.: Die Berechnung optischer und elektrostatischer Gitter potenciale. Annalen der Physik 64, 253–287 (1921)

    Article  ADS  Google Scholar 

  • Frenkel, D., Smit, B.: Understanding Molecular Simulation from Algorithms to Applications. Academic, San Diego (2001). ISBN 9780122673511

    Google Scholar 

  • Fukuda, I., Nakamura, H.: Non-Ewald methods: theory and applications to molecular systems. Biophys. Rev. 4, 161–170 (2012)

    Article  Google Scholar 

  • Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • Hardy, D.J., Stone, J.E., Vandivort, K.L., Gohara, D., Rodrigues, C., Schulten, K.: Fast molecular electrostatics algorithms on GPUs. In: Wen mei Hwu, W. (ed.) GPU Computing Gems, pp. 43–58. Morgan Kaufmann Publishers, San Francisco (2011)

    Google Scholar 

  • Hockney, R., Eastwood, J.: Computer simulation using particles. McGraw-Hill, New York (1981)

    MATH  Google Scholar 

  • Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Adam Hilger, Bristol (1988)

    Book  Google Scholar 

  • Humphrey, W., Dalke, A., Schulten, K.: VMD − Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  • Leach, A.R.: Molecular Modelling. Principles and Applications, 2nd edn. Pearson Education Limited, Edingburgh Gate/Prentice Hall (2001)

    Google Scholar 

  • Luty, B.A., David, M.E., Tironi, I.G., van Gunsteren., W.F.: A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol. Simul. 14, 11–20 (1994)

    Google Scholar 

  • Luty, B.A., Tironi, I.G., van Gunsteren, W.F.: Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys. 103, 3014–3021 (1995)

    Article  ADS  Google Scholar 

  • Phillips, J.C., Stone, J.E., Vandivort, K.L., Armstrong, T.G., Wozniak, J.M., Wilde, M., Schulten, K.: Petascale Tcl with NAMD, VMD, and Swift/T. In: SC’14 Workshop on High Performance Technical Computing in Dynamic Languages. IEEE Press (2014)

    Google Scholar 

  • Rajagopal, G., Needs, R.: An optimized Ewald method for long-ranged potentials. J. Comput. Phys. 115, 399–405 (1994)

    Article  ADS  Google Scholar 

  • Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  Google Scholar 

  • Schlick, T.: Molecular Modeling and Simulation. An Interdisciplinary Guide, 2nd edn. Springer, New York (2010)

    Google Scholar 

  • Shimada, J., Kaneko, H., Takada, T.: Efficient calculations of coulombic interactions in biomolecular simulations with periodic boundary conditions. J. Comput. Chem. 14, 867–878 (1993)

    Article  Google Scholar 

  • Shimada, J., Kaneko, H., Takada, T.: Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations. J. Comput. Chem. 15, 28–43 (1994)

    Article  Google Scholar 

  • Stone, J.E., Hardy, D.J., Isralewitz, B., Schulten, K.: GPU algorithms for molecular modelling. In: Bader, D.A., Kurzak, J. (eds.) Scientific Computing with Multicore and Accelerators, pp. 351–371. Chapman & Hall, Boca Raton (2011)

    Google Scholar 

  • Toukmaji, A.Y., Board, J.A. Jr., Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996)

    Article  ADS  Google Scholar 

  • Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Reversible multiple time step scale molecular dynamics. J. Chem. Phys. 97(3), 1990–2001 (1992)

    Article  ADS  Google Scholar 

  • York, D.M., Wlodawer, A., Pedersen, L., Darden, T.A.: Atomic-level accuracy in simulations of large protein crystals. Proc. Natl. Acad. Sci. USA 91, 8715–8718 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2020). Practical Aspects of Molecular Dynamics Simulations. In: Molecular Dynamics Simulations in Statistical Physics: Theory and Applications. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-35702-3_10

Download citation

Publish with us

Policies and ethics