Skip to main content

Credibility of In Situ Phytoremediation for Restoration of Disturbed Environments

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

In Mexico, the contamination by potentially toxic metals in soil and water represents substantial ecological and health problems. Plants capable to grow on anthropogenically modified grounds reflect their ability of adaptation to diverse environmental conditions. Most of phytoremediation studies are carried out under laboratory conditions, and only few studies evaluate the ability of phytoextraction under in situ conditions. This chapter summarizes the information obtained, by scientific sources, about in situ phytoremediation studies carried out in Mexico. Most of the studies correspond to sites polluted with trace metals by mining activities. The information here described will be useful for planning the remediation of contaminated sites by potentially toxic metals in Mexico and can be extrapolated to different sites contaminated with potentially toxic metals throughout the world. Four trace metal hyperaccumulator plants (Hydrocotyle ranunculoides, Parietaria pensylvanica, and Commelina diffusa for Zn and Rorippa nasturtium-aquaticum for Cu) are here described. The native species must be studied to establish mechanisms of phytoextraction of metals and interaction with water/soil and microorganisms to improve the efficiency of in situ phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and reduction of Cr (VI) to Cr (III) by mesquite (Prosopis spp.): chromate−plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864

    Article  CAS  PubMed  Google Scholar 

  • Antosiewicz DM (1992) Adaptation of plants to an environment polluted with heavy metals. Acta Soc Bot Pol 61:281–299

    Article  CAS  Google Scholar 

  • Armienta MA, Rodríguez R (1996) Arsénico en el Valle de Zimapán, México: Problemática Ambiental. Rev MAPFRE Seguridad 63:33–43

    Google Scholar 

  • Armienta MA, Ongley LK, Rodríguez R, Cruz O, Mango H, Villaseñor G (2008) Arsenic distribution in mesquite (Prosopis laevigata) and huizache (Acacia farnesiana) in the Zimapán mining area, México. Geochem Exp Environ Anal 8:191–197

    Article  Google Scholar 

  • Avelar M, Bonilla B, Merino M, Herrera JA, Ramirez J, Rosas H, Martínez A (2013) Iron, cadmium, and chromium in seagrass (Thalassia testudinum) from a coastal nature reserve in karstic Yucatán. Environ Monit Assess 185:7591–7603

    Article  CAS  PubMed  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2009) Uncommon heavy metals, metalloids and their plant toxicity: a review. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants, Sustainable agriculture reviews. Springer, New York, pp 275–309

    Chapter  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  PubMed  Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    Article  CAS  PubMed  Google Scholar 

  • Bhat RA, Beigh BA, Mir SA, Dar SA, Dervash MA, Rashid A, Lone R (2018a) Biopesticide techniques to remediate pesticides in polluted ecosystems. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, pp 387–407

    Google Scholar 

  • Bhat RA, Dervash MA, Qadri H, Mushtaq N, Dar GH (2018b) Macrophytes, the natural cleaners of toxic heavy metal (THM) pollution from aquatic ecosystems. In: Environmental contamination and remediation. Cambridge Scholars, Cambridge, pp 189–209

    Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotox Environ Safe 97:124–130

    Article  CAS  Google Scholar 

  • Cai Y, Ma LQ (2003) Metal tolerance, accumulation, and detoxification in plants with emphasis on arsenic in terrestrial plants. In: Cai Y, Braids O (eds) Biogeochemistry of environmentally important trace elements, ACS symposium series, vol 835. University Press, London, pp 95–114

    Chapter  Google Scholar 

  • Carmona E, Carrillo R, González Mdel CA, Vibrans H, Yáñez L, Delgado A (2016) Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: useful for phytoremediation? Int J Phytoremediation 18:861–868

    Article  CAS  Google Scholar 

  • Carranza C, Alonso AJ, Alfaro MC, García RF (2008) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air Soil Poll 188:297–309

    Article  CAS  Google Scholar 

  • Carrión C, Ponce C, Cram S, Sommer I, Hernández M, Vanegas C (2012) Aprovechamiento potencial del lirio acuático (Eichhornia crassipes) en Xochimilco para fitorremediación de metales. Agrociencia 46:609–620

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cortés JEV, Mugica AV, González CMCA, Carrillo GR, Gordillo MM, Mier MV (2013) Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, México. Int J Phytoremediation 15:127–141

    Article  CAS  Google Scholar 

  • Covarrubias SA, Peña JJ (2017) Contaminación Ambiental por metales pesados en México: Problemática y estrategias de fitorremediación. Rev Int Contam Ambient 33:7–21

    Article  Google Scholar 

  • Figueroa JAL, Wrobel K, Afton S, Caruso JA, Gutierrez J, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Alarcón MT, González S, Olguín EJ (2003) Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua, Mexico. Acta Biotechnol 23:113–119

    Article  Google Scholar 

  • Franco MO, Vásquez MS, Patiño A, Dendooven L (2010) Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour Technol 101:3864–3869

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, De La Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Article  CAS  Google Scholar 

  • Giordani C, Cecchi S, Zanchi C (2005) Phytoremediation of soil polluted by nickel using agricultural crops. Environ Manag 36:675–681

    Article  Google Scholar 

  • González RC, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Article  PubMed  CAS  Google Scholar 

  • González MC, Carrillo R, Gutiérrez MC (2009) Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. J Hazard Mater 161:1288–1298

    Article  CAS  Google Scholar 

  • González O, Gómez JM, Ruíz EA (2012) Plants and soil contamination with heavy metals in agricultural areas of Guadalupe, Zacatecas, Mexico. In: Srivastava JK (ed) Environmental contamination. Intech Open, London, pp 37–50

    Google Scholar 

  • Gulz PA, Gupta SK, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  • Haque N, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2009) Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Bioresour Technol 100:6177–6182

    Article  CAS  PubMed  Google Scholar 

  • Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 30:780–787

    Article  CAS  Google Scholar 

  • Hazrat AK, Ezzat S (2013) Phytoremediation of heavy metals–concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Hernández E, Mondragón E, Cristóbal D, Rubiños JE, Robledo E (2009) Vegetación, residuos de mina y elementos potencialmente tóxicos de un jal de Pachuca, Hidalgo, México. Rev Chapingo Ser Cienc For Ambient 15:109–114

    Google Scholar 

  • Hernández G, García R, Solís S, Martínez S, Mercado I, Ramírez M, Solorio G (2012) Presencia del Hg total en una relación suelo-planta-atmósfera al sur de la Sierra Gorda de Querétaro, México. Rev Esp Cienc Quim Biol 15:5–15

    Google Scholar 

  • INEGI (2010) National Institute of Statistics Geography and Informatics. Mining in Mexico. Sect Stat Series 24:156

    Google Scholar 

  • Jamil S, Abhilash PC, Singh N, Sharma PN (2009) Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater 172:269–275

    Article  CAS  PubMed  Google Scholar 

  • Juárez LF, Lucho CA, Vázquez GA, Cerón NM, Beltrán RI (2010) Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Bioresour Technol 101:5836–5841

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48

    Article  CAS  PubMed  Google Scholar 

  • Leblebici Z, Aksoy A, Duman F (2011) Influence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza (Lemnaceae). Turk J Biol 35:215–220

    CAS  Google Scholar 

  • Levresse G, Lopez G, Tritlla J, López EC, Chavez AC, Salvador EM, Corona R (2012) Phytoavailability of antimony and heavy metals in arid regions: the case of the Wadley Sb district (San Luis, Potosí, Mexico). Sci Total Environ 427–428:115–125

    Article  PubMed  CAS  Google Scholar 

  • Li T, Tao Q, Liang C, Shohag MJ, Yang X, Sparks DL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255

    Article  CAS  PubMed  Google Scholar 

  • López S, Gallegos ME, Flores LJP, Rojas MG (2005) Mecanismos de fitorremediación de suelos contaminados con moléculas orgánicas xenobióticas. Rev Int Contam Ambient 21:91–100

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Machado B, Calderón J, Moreno R, Rodríguez JS (2013) Accumulation of arsenic, lead, copper, and zinc, and synthesis of phytochelatins by indigenous plants of a mining impacted area. Environ Sci Pollut Res 20:3946–3955

    Article  CAS  Google Scholar 

  • Martínez S, Hernández G, Ramírez ME, Martínez J, Solorio G, Solís S, García R (2013) Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico. Geofis Int 52:43–58

    Google Scholar 

  • Mauricio A, Peña JJ, Maldonado M (2010) Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland. Int J Phytoremediation 12:317–334

    Article  CAS  Google Scholar 

  • Mireles A, Solıs C, Andrade E, Lagunas-Solar M, Pina C, Flocchini RG (2004) Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City. Nucl Instrum Methods Phys Res B 219:187–190

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson B (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Pilon SE (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Prieto F, Judith G, Hernández C, Ángeles MDL, Gaytán J, Enrique I, Lechuga MDLA (2005) Acumulación en tejidos vegetales de arsénico proveniente de Aguas y Suelos de Zimapán, Estado de Hidalgo, México. Bioagro 17:129–135

    Google Scholar 

  • Puga S, Sosa M, De la Mora A, Pinedo C, Jiménez J (2006) Concentraciones de As y Zn en vegetación nativa cercana a una presa de jales. Rev Int Contam Ambie 22:75–82

    CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ramos YR, Siebe CD (2006) Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: estudio de caso en el Distrito de Guanajuato, México. Rev Mex Cienc Geol 23:54–74

    Google Scholar 

  • Razo I, Carrizales L, Castro J, Diaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Poll 152:129–152

    Article  CAS  Google Scholar 

  • Rivera F, Juárez LV, Hernández SC, Acevedo OA, Vela G, Cruz E, De León F (2013) Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Arch Environ Contam Toxicol 64:219–227

    Article  CAS  Google Scholar 

  • Ruiz Olivares A, Carrillo-González R, González-Chávez Mdel C, Soto Hernández RM (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manag 114:316–323

    Article  CAS  Google Scholar 

  • Salas MA, Manzanares E, Letechipia C, Vega HR (2009) Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian J Exp Sci 23:27–32

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPAB, Dushenkov V, Ensley BD (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  PubMed  Google Scholar 

  • Sánchez AS, Carrillo R, González MDCA, Rosas GH, Vangronsveld J (2015) Phytobarriers: plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions. Environ Pollut 205:33–42

    Article  CAS  Google Scholar 

  • Santos J, Castro A, Huezo J, Torres L (2012) Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico. Phys Chem Earth 37–39:10–17

    Article  Google Scholar 

  • SEMARNAT (2010) Environmental and Natural Resources Secretariat. National Program for Prevention and Integral Management of Residues 117

    Google Scholar 

  • Tian D, Zhu F, Yan W, Fang X, Xiang W, Deng X, Wang G, Peng C (2009) Heavy metal accumulation by Panicled Goldenrain tree (Koelreuteriapaniculata) and common Elaeocarpus (Elaeocarpus decipens) in abandoned mine soils in southern China. J Environ Sci 21:340–345

    Article  CAS  Google Scholar 

  • Tu S, Ma L, Luongo T (2004) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 258:9–19

    Article  CAS  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel WWR, Unterbrunner P, Sommer SP (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    Article  CAS  Google Scholar 

  • Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291

    Article  CAS  PubMed  Google Scholar 

  • Zarazúa G, Poblano J, Tejeda S, Ávila P, Zepeda C, Ortiz H, Macedo G (2013) Assessment of spatial variability of heavy metals in metropolitan zone of Toluca valley, Mexico, using the biomonitoring technique in mosses and TXRF analysis. Sci World J:426492

    Google Scholar 

  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candy Carranza-Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong-Arguelles, C., Alonso-Castro, A.J., Ilizaliturri-Hernandez, C.A., Carranza-Alvarez, C. (2020). Credibility of In Situ Phytoremediation for Restoration of Disturbed Environments. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_11

Download citation

Publish with us

Policies and ethics