Skip to main content

Quantum Networks Based on Single Photons

  • Chapter
  • First Online:
Book cover Semiconductor Nanophotonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 194))

  • 1831 Accesses

Abstract

Quantum networks rely on the transfer of quantum information between stationary quantum nodes. Physically the nodes are connected by single photons. In a first part of this chapter we address different components of a quantum network. We start with a discussion of semiconductor photon sources with an emission wavelength near 900 nm. In order to make them suitable for fiber-networks a conversion to the telecom band is required. We describe how such converters can be realized with the help of nonlinear optics. Next we address photon storage devices as crucial components of quantum repeaters, which are necessary to establish quantum key distribution (QKD) over long distances. We concentrate on the approach of room-temperature gas cells filled with alkali atoms and outline first promising result. In a second part we address a special QKD protocol, the so-called time-frequency (TF) protocol. It can mostly be realized with off-the-shelf components and its encoding of quantum bits in frequency and time suggests a straightforward way to utilize multiplexing. We analyze the TF-protocol numerically before we report on an actual free-space link over 100 m as a testbed for a quantum network in a realistic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008). https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  2. S. Wehner, D. Elkouss, R. Hanson, Quantum internet: a vision for the road ahead. Science 362, 1–9 (2018). https://doi.org/10.1126/science.aam9288

    Article  MathSciNet  Google Scholar 

  3. S. Zaske, A. Lenhard, C.A. Kessler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012). https://doi.org/10.1103/PhysRevLett.109.147404

    Article  ADS  Google Scholar 

  4. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M.S. Blok, L. Robledo, T.H. Taminiau, M. Markham, D.J. Twitchen, L. Childress, R. Hanson, Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013). https://doi.org/10.1038/nature12016

    Article  ADS  Google Scholar 

  5. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.-E. Pistol, L. Samuelson, G. Björk, Single quantum dots emit single photons at a time: antibunching experiments. Appl. Phys. Lett. 78, 2476–2478 (2001). https://doi.org/10.1063/1.1366367

    Article  ADS  Google Scholar 

  6. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010). https://doi.org/10.1038/nature09256

    Article  ADS  Google Scholar 

  7. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). https://doi.org/10.1038/nature02851

    Article  ADS  Google Scholar 

  8. J. Volz, W. Weber, D. Schlenk, W. Rosenfeld, V. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006). https://doi.org/10.1103/physrevlett.96.030404

    Article  ADS  Google Scholar 

  9. B.B. Blinov, D.L. Moehring, L. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004). https://doi.org/10.1038/nature02377

    Article  ADS  Google Scholar 

  10. B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000). https://doi.org/10.1038/35035032

    Article  ADS  Google Scholar 

  11. W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012). https://doi.org/10.1038/nature11573

    Article  ADS  Google Scholar 

  12. N. Sangouard, C. Simon, H. Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011). https://doi.org/10.1103/RevModPhys.83.33

    Article  ADS  Google Scholar 

  13. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  MATH  Google Scholar 

  14. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998). https://doi.org/10.1103/PhysRevLett.81.5932

    Article  ADS  Google Scholar 

  15. M. Benyoucef, M. Yacob, J.P. Reithmaier, J. Kettler, P. Michler, Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett. 103, 162101 (2013). https://doi.org/10.1063/1.4825106

    Article  ADS  Google Scholar 

  16. A. Kors, K. Fuchs, M. Yacob, J.P. Reithmaier, M. Benyoucef, Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities. Appl. Phys. Lett. 110, 031101 (2017). https://doi.org/10.1063/1.4974207

    Article  ADS  Google Scholar 

  17. N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, G. Sęk, Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 μm fabricated by in-situ electron-beam lithography. AIP Adv. 8, 085205 (2018). https://doi.org/10.1063/1.5038137

    Article  ADS  Google Scholar 

  18. C.-Y. Lu, J.-W. Pan, Structural and optical properties of InAs/(In)GaAs/GaAs quantum dots with single-photon emission in the telecom C-band up to 77 K. Phys. Rev. B 98, 125407 (2018). https://doi.org/10.1103/PhysRevB.98.125407

    Article  Google Scholar 

  19. I. Aharonovic, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016). https://doi.org/10.1038/NPHOTON.2016.186

    Article  ADS  Google Scholar 

  20. O. Benson, C. Santori, M. Pleton, Y. Yamamoto, Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000). https://doi.org/10.1103/PhysRevLett.84.2513

    Article  ADS  Google Scholar 

  21. C.-Y. Lu, J.-W. Pan, Push-button photon entanglement. Nat. Photonics 8, 174–176 (2014). https://doi.org/10.1038/nphoton.2014.29

    Article  ADS  Google Scholar 

  22. M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014). https://doi.org/10.1038/NPHOTON.2013.377

    Article  ADS  Google Scholar 

  23. L. Schweickert, K.D. Jöns, K.D. Zeuner, S.F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller, On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018). https://doi.org/10.1063/1.5020038

    Article  ADS  Google Scholar 

  24. D. Huber, M. Reindl, S.F. Covre da Silva, C. Schimpf, J. Martín-Sánchez, H. Huang, G. Piredda, J. Edlinger, A. Rastelli, R. Trotta, Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018). https://doi.org/10.1103/physrevlett.121.033902

    Article  ADS  Google Scholar 

  25. N. Somaschi, V. Giesz, L. De Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A.G. White, L. Lanco, P. Senellart, Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340–345 (2016). https://doi.org/10.1038/nphoton.2016.23

    Article  ADS  Google Scholar 

  26. R.W. Boyd, in Nonlinear Optics. (Academic Press, 2013)

    Google Scholar 

  27. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435 (1993). https://doi.org/10.1063/1.108925

    Article  ADS  Google Scholar 

  28. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  ADS  Google Scholar 

  29. T. Kroh, A. Ahlrichs, B. Sprenger, O. Benson, Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength. Quantum Sci. Technol. 2, 034007 (2017). https://doi.org/10.1088/2058-9565/aa736c

    Article  ADS  Google Scholar 

  30. J. Zhang, J.S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, O.G. Schmidt, High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015). https://doi.org/10.1038/ncomms10067

    Article  ADS  Google Scholar 

  31. H. Jayakumar, A. Predojević, T. Kauten, T. Huber, G.S. Solomon, G. Weihs, Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4521 (2014). https://doi.org/10.1038/ncomms5251

    Article  Google Scholar 

  32. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photonics 3, 706–714 (2009). https://doi.org/10.1038/nphoton.2009.231

    Article  ADS  Google Scholar 

  33. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001). https://doi.org/10.1038/35106500

    Article  ADS  Google Scholar 

  34. P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493(R) (1995). https://doi.org/10.1103/PhysRevA.52.R2493

    Article  ADS  Google Scholar 

  35. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kröll, J.H. Müller, J. Nunn, E.S. Polzik, J.G. Rarity, H. De Riedmatten, W. Rosenfeld, A.J. Shields, N. Sköld, R.M. Stevenson, R. Thew, I.A. Walmsley, M.C. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Quantum memories. Eur. Phys. J. D 58, 1 (2010). https://doi.org/10.1140/epjd/e2010-00103-y

    Article  ADS  Google Scholar 

  36. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  37. Z.J. Ou, Multi-Photon Quantum Interference (Springer, Berlin, 2007)

    MATH  Google Scholar 

  38. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, M. Afzelius, Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory. Phys. Rev. Lett. 114, 230502 (2015). https://doi.org/10.1103/PhysRevLett.114.230502

    Article  ADS  Google Scholar 

  39. T. Zhong, J.M. Kindem, J.G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. Woo Nam, F. Marsili, M.D. Shaw, A.D. Beyer, A. Faraon, Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017). https://doi.org/10.1126/science.aan5959

    Article  ADS  MathSciNet  Google Scholar 

  40. D.D. Sukachev, A. Sipahigil, C.T. Nguyen, M.K. Bhaskar, R.E. Evans, F. Jelezko, M.D. Lukin, Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017). https://doi.org/10.1103/PhysRevLett.119.223602

    Article  ADS  Google Scholar 

  41. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004). https://doi.org/10.1038/nature03008

    Article  ADS  Google Scholar 

  42. Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, K. Kim, Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photonics 11, 646–650 (2017). https://doi.org/10.1038/s41566-017-0007-1

    Article  ADS  Google Scholar 

  43. P. Vernaz-Gris, K. Huang, M. Cao, A.S. Sheremet, J. Laurat, Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9, 363 (2018). https://doi.org/10.1038/s41467-017-02775-8

    Article  ADS  Google Scholar 

  44. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, G.-C. Guo, Raman quantum memory of photonic polarized entanglement. Nat. Photonics 9, 332–338 (2015). https://doi.org/10.1038/NPHOTON.2015.43

    Article  ADS  Google Scholar 

  45. J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R.J. Warburton, P. Treutlein, Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017). https://doi.org/10.1103/PhysRevLett.119.060502

    Article  ADS  Google Scholar 

  46. D. Höckel, O. Benson, Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. Phys. Rev. Lett. 105, 153605 (2010). https://doi.org/10.1103/PhysRevLett.105.153605

    Article  ADS  Google Scholar 

  47. P.S. Michelberger, T.F.M. Champion, M.R. Sprague, K.T. Kaczmarek, M. Barbieri, X.M. Jin, D.G. England, W.S. Kolthammer, D.J. Saunders, J. Nunn, Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory. New J. Phys. 17, 043006 (2015). https://doi.org/10.1088/1367-2630/17/4/043006

    Article  ADS  Google Scholar 

  48. D.J. Saunders, J.H.D. Munns, T.F.M. Champion, C. Qiu, K.T. Kaczmarek, E. Poem, P.M. Ledingham, I.A. Walmsley, J. Nunn, Cavity-enhanced room-temperature broadband raman memory. Phys. Rev. Lett. 116, 090501 (2016). https://doi.org/10.1103/PhysRevLett.116.090501

    Article  ADS  Google Scholar 

  49. M.T. Graf, D.F. Kimball, S.M. Rochester, K. Kerner, C. Wong, D. Budker, E.B. Alexandrov, M.V. Balabas, V.V. Yashchuk, Relaxation of atomic polarization in paraffin-coated cesium vapor cells. Phys. Rev. A 72, 023401 (2005). https://doi.org/10.1103/PhysRevA.72.023401

    Article  ADS  Google Scholar 

  50. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, C. Adams, Effect of buffer gas on an electromagnetically induced transparency in a ladder system using thermal rubidium vapor. Phys. Rev. A 82, 045806 (2010). https://doi.org/10.1103/PhysRevA.82.045806

    Article  ADS  Google Scholar 

  51. N. Akopian, L. Wang, A. Rastelli, O.G. Schmidt, V. Zwiller, Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photonics 5, 230–233 (2011). https://doi.org/10.1038/nphoton.2011.16

    Article  ADS  Google Scholar 

  52. B.R. Mollow, Power spectrum of light scattered by two-level systems. Phys. Rev. 1969, 188 (1969). https://doi.org/10.1103/PhysRev.188.1969

    Article  Google Scholar 

  53. H.J. Kimble, M. Dagenais, L. Mandel, Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977). https://doi.org/10.1103/PhysRevLett.39.691

    Article  ADS  Google Scholar 

  54. S.M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, P. Michler, Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot. Phys. Rev. B 90, 125310 (2014). https://doi.org/10.1103/PhysRevB.90.125310

    Article  ADS  Google Scholar 

  55. S.L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, I. Gerhardt, Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition. Nat. Commun. 7, 13632 (2016). https://doi.org/10.1038/ncomms13632

    Article  ADS  Google Scholar 

  56. F. Ding, R. Singh, J.D. Plumhof, T. Zander, V. Křápek, Y.H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, O.G. Schmidt, Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys. Rev. Lett. 104, 067405 (2010). https://doi.org/10.1103/PhysRevLett.104.067405

    Article  ADS  Google Scholar 

  57. A. Rastelli, F. Ding, J.D. Plumhof, S. Kumar, R. Trotta, C. Deneke, A. Malachias, P. Atkinson, E. Zallo, T. Zander, A. Herklotz, R. Singh, V. Křápek, J.R. Schröter, S. Kiravittaya, M. Benyoucef, R. Hafenbrak, K.D. Jöns, D.J. Thurmer, D. Grimm, G. Bester, K. Dörr, P. Michler, O.G. Schmidt, Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators. Phys. Status Solidi B 249, 687–696 (2012). https://doi.org/10.1002/pssb.201100775

    Article  ADS  Google Scholar 

  58. J.-P. Jahn, M. Munsch, L. Béguin, A.V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O.G. Schmidt, A. Rastelli, P. Treutlein, R.J. Warburton, An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B 92, 245439 (2015). https://doi.org/10.1103/PhysRevB.92.245439

    Article  ADS  Google Scholar 

  59. J.S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O.G. Schmidt, A. Rastelli, Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots. Phys. Rev. B 92, 235306 (2015). https://doi.org/10.1103/PhysRevB.92.235306

    Article  ADS  Google Scholar 

  60. R. Trotta, J. Martín-Sánchez, J.S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, A. Rastelli, Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016). https://doi.org/10.1038/ncomms10375

    Article  ADS  Google Scholar 

  61. H. Vural, S.L. Portalupi, J. Maisch, S. Kern, J.H. Weber, M. Jetter, J. Wrachtrup, R. Löw, I. Gerhardt, P. Michler, Two-photon interference in an atom–quantum dot hybrid system. Optica 5, 367–373 (2018). https://doi.org/10.1364/OPTICA.5.000367

    Article  ADS  Google Scholar 

  62. K.T. Kaczmarek, P.M. Ledingham, B. Brecht, S.E. Thomas, G.S. Thekkadath, O. Lazo-Arjona, J.H.D. Munns, E. Poem, A. Feizpour, D.J. Saunders, J. Nunn, I.A. Walmsley, High-speed noise-free optical quantum memory. Phys. Rev. A 97, 042316 (2018). https://doi.org/10.1103/PhysRevA.97.042316

    Article  ADS  Google Scholar 

  63. R. Finkelstein, E. Poem, O. Michel, O. Lahad, O. Firstenberg, Fast, noise-free memory for photon synchronization at room temperature. Sci. Adv. 4, eaap8598 (2018). https://doi.org/10.1126/sciadv.aap8598

    Article  ADS  Google Scholar 

  64. C. H. Bennett, G. Brassard, in Quantum Cryptography: Public Key Distribution and Coin Tossing, Conference on Computers, Systems and Signal Processing (Bangalore, India, Dec 1984), pp. 175–179

    Google Scholar 

  65. M.D. Reid, Quantum cryptography with a predetermined key, using continuous-variable einstein-podolsky-rosen correlations. Phys. Rev. A 62, 062308 (2000). https://doi.org/10.1103/PhysRevA.62.062308

    Article  ADS  Google Scholar 

  66. M. Hillery, Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309 (2000). https://doi.org/10.1103/PhysRevA.61.022309

    Article  ADS  Google Scholar 

  67. T.C. Ralph, Continuous variable quantum cryptography. Phys. Rev. A 61, 010303 (1999). https://doi.org/10.1103/PhysRevA.61.010303

    Article  MathSciNet  Google Scholar 

  68. N.T. Islam, C. Cahall, A. Aragoneses, A. Lezama, J. Kim, D.J. Gauthier, Robust and stable delay interferometers with application to d-dimensional time-frequency quantum key distribution. Phys. Rev. Appl. 7, 044010 (2017). https://doi.org/10.1103/PhysRevApplied.7.044010

    Article  ADS  Google Scholar 

  69. C. Lee, D. Bunandar, Z. Zhang, G.R. Steinbrecher, P.B. Dixon, F.N. Wong, J.H. Shapiro, S.A. Hamilton, D. Englund, in High-rate field demonstration of large-alphabet quantum key distribution, preprint arXiv:1611.01139 (2016)

  70. T. Zhong, H. Zhou, R.D. Horansky, C. Lee, V.B. Verma, A.E. Lita, A. Restelli, J.C. Bienfang, R.P. Mirin, T. Gerrits, Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New J. Phys. 17, 022002 (2015). https://doi.org/10.1088/1367-2630/17/2/022002

    Article  ADS  Google Scholar 

  71. https://www.toshiba.co.jp/about/press/2017_09/pr1501.htm

  72. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang et al., Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016). https://doi.org/10.1103/PhysRevLett.117.190501

    Article  ADS  Google Scholar 

  74. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, Current status of the DARPA quantum network. Quantum Inf. Comput. III Int. Soc. Opt. Photonics 5815, 138–150 (2005). https://doi.org/10.1117/12.606489

    Article  ADS  Google Scholar 

  75. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka et al., Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011). https://doi.org/10.1364/OE.19.010387

    Article  ADS  Google Scholar 

  76. T.P. Spiller, Quantum Communications hub EPSRC. Impact 2018(5), 12 (2018). https://doi.org/10.21820/23987073.2018.5.12, https://www.quantumcommshub.net/

    Article  Google Scholar 

  77. http://english.cas.cn/newsroom/news/201703/t20170324_175288.shtml

  78. S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu et al., Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018). https://doi.org/10.1103/physrevlett.120.030501

    Article  ADS  Google Scholar 

  79. J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai et al., Satellite-based entanglement distribution over 1200 km. Science 356, 1140 (2017). https://doi.org/10.1126/science.aan3211

    Article  Google Scholar 

  80. M. Leifgen, R. Elschner, N. Perlot, C. Weinert, C. Schubert, O. Benson, Practical implementation and evaluation of a quantum-key-distribution scheme based on the time-frequency uncertainty. Phys. Rev. A 92, 042311 (2015). https://doi.org/10.1103/PhysRevA.92.042311

    Article  ADS  Google Scholar 

  81. J. Rödiger, N. Perlot, R. Mottola, R. Elschner, C.-M. Weinert, O. Benson, R. Freund, Numerical assessment and optimization of discrete-variable time-frequency quantum key distribution. Phys. Rev. A 95, 052312 (2017). https://doi.org/10.1103/PhysRevA.95.052312

    Article  ADS  Google Scholar 

  82. Y. Zhang, I.B. Djordjevic, M.A. Neifeld, Weak-coherent-state-based time-frequency quantum key distribution. J. Mod. Opt. 62, 1713–1721 (2015). https://doi.org/10.1080/09500340.2015.1075616

    Article  ADS  Google Scholar 

  83. N. Namekata, S. Adachi, S. Inoue, 1.5 ghz single-photon detection at telecommunication wavelengths using sinusoidally gated ingaas/inp avalanche photodiode. Opt. Express 17, 6275 (2009). https://doi.org/10.1364/oe.17.006275

    Article  ADS  Google Scholar 

  84. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek et al., Entanglement-based quantum communication over 144 km. Nat. Physics 3, 481–486 (2007). https://doi.org/10.1038/nphys629

    Article  ADS  Google Scholar 

  85. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J.G. Rarity et al., Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007). https://doi.org/10.1103/physrevlett.98.010504

    Article  ADS  Google Scholar 

  86. S.-K. Liao, H.-L. Yong, C. Liu, G.-L. Shentu, D.-D. Li, J. Lin, H. Dai, S.-Q. Zhao, B. Li, J.-Y. Guan et al., Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics 11, 509 (2017). https://doi.org/10.1038/nphoton.2017.116

    Article  Google Scholar 

  87. N. Perlot, J. Roediger, R. Freund, Single-mode optical antenna for high-speed and quantum communications, in Photonic Networks, 19th ITG-Symposium. VDE (2018), pp. 1–4

    Google Scholar 

  88. P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017). https://doi.org/10.1038/nnano.2017.218

    Article  ADS  Google Scholar 

  89. T. Müller, J. Skiba-Szymanska, A.B. Krysa, J. Huwer, M. Felle, M. Anderson, R.M. Stevenson, J. Heffernan, D.A. Ritchie, A. Shields, A quantum light-emitting diode for the standard telecom window around 1550 nm. Nat. Commun. 9, 862 (2018). https://doi.org/10.1038/s41467-018-03251-7

    Article  ADS  Google Scholar 

  90. A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, S. Reitzenstein, A stand-alone fiber-coupled single-photon source. Sci. Rep. 8, 1340 (2018). https://doi.org/10.1038/s41598-017-19049-4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Benson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benson, O., Kroh, T., Müller, C., Rödiger, J., Perlot, N., Freund, R. (2020). Quantum Networks Based on Single Photons. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_9

Download citation

Publish with us

Policies and ethics