Skip to main content

Deterministic Quantum Devices for Optical Quantum Communication

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Abstract

Photonic quantum technologies are based on the exchange of information via single photons. The information is typically encoded in the polarization of the photons and security is ensured intrinsically via principles of quantum mechanics such as the no-cloning theorem. Thus, all optical quantum communication networks rely crucially on the availability of suitable quantum-light sources. Such light sources with close to ideal optical and quantum optical properties can be realized by self-assembled semiconductor quantum dots. These high-quality nanocrystals are predestined single-photon emitters due to their quasi zero-dimensional carrier confinement. Still, the development of practical quantum-dot-based sources of single photons and entangled-photon pairs for applications in photonic quantum technology and especially for the quantum-repeater scheme is very demanding and requires highly advanced device concepts and deterministic fabrication technologies. This is mainly explained by their random position and emission energy as well as by the low photon-extraction efficiency in simple planar device configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, N. Gisin, Phys. Rev. A 76, 050301 (2007). https://doi.org/10.1103/PhysRevA.76.050301

    Article  ADS  Google Scholar 

  2. N. Gisin, R. Thew, Nat. Photon. 1, 165 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  ADS  Google Scholar 

  3. H.J. Kimble, Nature 453, 1023 (2008). https://doi.org/10.1038/nature07127

    Article  ADS  Google Scholar 

  4. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  Google Scholar 

  5. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982). https://doi.org/10.1038/299802a0

    Article  ADS  Google Scholar 

  6. C.H. Bennett, G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India, 1984), pp. 175–179. https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  Google Scholar 

  7. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J.F. Dynes, A.R. Dixon, A.W. Sharpe, Z.L. Yuan, A.J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, Opt. Express 19, 10387 (2011). https://doi.org/10.1364/OE.19.010387

    Article  ADS  Google Scholar 

  8. H.K. Lo, M. Curty, K. Tamaki, Nat. Photon. 8, 595 (2014). https://doi.org/10.1038/nphoton.2014.149

    Article  ADS  Google Scholar 

  9. H.K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503

    Article  ADS  Google Scholar 

  10. Z.S. Yuan, Y.A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, J.W. Pan, Nature 454, 1098 (2008). https://doi.org/10.1038/nature07241

    Article  ADS  Google Scholar 

  11. A.J. Shields, Nat. Photon. 1, 215 (2007). https://doi.org/10.1038/nphoton.2007.46

    Article  ADS  Google Scholar 

  12. I. Aharonovich, D. Englund, M. Toth, Nat. Photon. 10, 631 (2016). https://doi.org/10.1038/nphoton.2016.186

    Article  ADS  Google Scholar 

  13. P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoğlu, Science 290, 2282 (2000). https://doi.org/10.1126/science.290.5500.2282

    Article  ADS  Google Scholar 

  14. W. Barnes, G. Björk, J. Gérard, P. Jonsson, J. Wasey, P. Worthing, V. Zwiller, Eur. Phys. J. D 18, 197 (2002). https://doi.org/10.1140/epjd/e20020024

    Article  ADS  Google Scholar 

  15. V. Zwiller, T. Aichele, O. Benson, New J. Phys. 6, 96 (2004). https://doi.org/10.1088/1367-2630/6/1/096

    Article  ADS  Google Scholar 

  16. N. Somaschi, V. Giesz, L. De Santis, J.C. Loredo, M.P. Almeida, G. Hornecker, S.L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N.D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A.G. White, L. Lanco, P. Senellart, Nat. Photon. (2016). https://doi.org/10.1038/NPHOTON.2016.23

    Article  Google Scholar 

  17. S. Unsleber, Y.M. He, S. Gerhardt, S. Maier, C.Y. Lu, J.W. Pan, N. Gregersen, M. Kamp, C. Schneider, S. Höfling, Opt. Express 24, 8539 (2016). https://doi.org/10.1364/oe.24.008539

    Article  ADS  Google Scholar 

  18. J. Claudon, J. Bleuse, N.S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.M. Gérard, Nat. Photon. 4, 174 (2010). https://doi.org/10.1038/NPHOTON.2009.287x

    Article  ADS  Google Scholar 

  19. M.E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M.B. Bavinck, M.A. Verheijen, E.P. Bakkers, L.P. Kouwenhoven, V. Zwiller, Nat. Commun. 3, 737 (2012). https://doi.org/10.1038/ncomms1746

    Article  ADS  Google Scholar 

  20. F.W. Ostermayer, Appl. Phys. Lett. 43, 642 (1983). https://doi.org/10.1063/1.94461

    Article  ADS  Google Scholar 

  21. Y.S. Kim, J. Kim, J.S. Choe, Y.G. Rob, H. Jeon, J. Woo, IEEE Photon Technol. Lett. 12, 507 (2000). https://doi.org/10.1109/68.841268

    Article  ADS  Google Scholar 

  22. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, S. Reitzenstein, Nat. Commun. 6, 7662 (2015). https://doi.org/10.1038/ncomms8662

    Article  ADS  Google Scholar 

  23. L. Sapienza, M. Davanço, A. Badolato, K. Srinivasan, Nat. Commun. 6, 7833 (2015). https://doi.org/10.1038/ncomms8833

    Article  ADS  Google Scholar 

  24. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000). https://doi.org/10.1103/PhysRevLett.84.2513

    Article  ADS  Google Scholar 

  25. S. Strauf, N.G. Stoltz, M.T. Rakher, L.A. Coldren, P.M. Petroff, D. Bouwmeester, Nat. Photon. 1, 704 (2007). https://doi.org/10.1038/nphoton.2007.227

    Article  ADS  Google Scholar 

  26. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, S. Reitzenstein, Phys. Rev. Lett. 116, (2016). https://doi.org/10.1103/PhysRevLett.116.033601

  27. A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Phys. Rev. Lett. 99, 187402 (2007). https://doi.org/10.1103/PhysRevLett.99.187402

    Article  ADS  Google Scholar 

  28. M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, Nat. Photon. 8, 224 (2014). https://doi.org/10.1038/nphoton.2013.377

    Article  ADS  Google Scholar 

  29. K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, Y. Arakawa, Sci. Rep. 5, 14383 (2015). https://doi.org/10.1038/srep14383

    Article  ADS  Google Scholar 

  30. N. Srocka, A. Musiał, P.I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, G. Sęk, AIP Adv. 8, 085205 (2018). https://doi.org/10.1063/1.5038137

    Article  ADS  Google Scholar 

  31. P.I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, S. Burger, Opt. Express 26, 8479 (2018). https://doi.org/10.1364/OE.26.008479

    Article  ADS  Google Scholar 

  32. P.I. Schneider, X.G. Santiago, V. Soltwisch, M. Hammerschmidt, S. Burger, C. Rockstuhl, ACS Photonics 6, 2726 (2019). https://doi.org/10.1021/acsphotonics.9b00706

    Article  Google Scholar 

  33. L. Zschiedrich, H. Greiner, S. Burger, F. Schmidt, Proc. SPIE 8641, 86410B (2013). https://doi.org/10.1117/12.2001132

    Article  ADS  Google Scholar 

  34. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  Google Scholar 

  35. Y. Zhang, S. Wang, G. Ji, Math. Probl. Eng. 2015, 931256 (2015). https://doi.org/10.1155/2015/931256

    Article  Google Scholar 

  36. S. Das, P.N. Suganthan, I.E.E.E. Trans, Evol. Comput. 15, 4 (2011). https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  37. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas, Proc. IEEE 104, 148 (2016). https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

  38. C.K. Williams, in Learning in Graphical Models (Springer, 1998), pp. 599–621. https://doi.org/10.1007/978-94-011-5014-9_23

    Chapter  Google Scholar 

  39. P. Schnauber, J. Schall, S. Bounouar, T. Höhne, S.I. Park, G.H. Ryu, T. Heindel, S. Burger, J.D. Song, S. Rodt, S. Reitzenstein, Nano Lett. 18, 2336 (2018). https://doi.org/10.1021/acs.nanolett.7b05218

    Article  ADS  Google Scholar 

  40. Z. Yuan, B.E. Kardynal, R.M. Stevenson, A.J. Shields, C.J. Lobo, K. Cooper, N.S. Beattie, D.A. Ritchie, M. Pepper, Science 295, 102 (2002). https://doi.org/10.1126/science.1066790

    Article  ADS  Google Scholar 

  41. T. Heindel, C. Schneider, M. Lermer, S.H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, Appl. Phys. Lett. 96, 011107 (2010). https://doi.org/10.1063/1.3284514

    Article  ADS  Google Scholar 

  42. F. Hargart, C.A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, P. Michler, Appl. Phys. Lett. 102, 011126 (2013). https://doi.org/10.1063/1.4774392

    Article  ADS  Google Scholar 

  43. A. Boretti, L. Rosa, A. Mackie, S. Castelletto, Adv. Opt. Mat. 3, 1012 (2015). https://doi.org/10.1002/adom.201500022

    Article  Google Scholar 

  44. A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, S. Reitzenstein, APL Photon. 1, 011301 (2016). https://doi.org/10.1063/1.4939831

    Article  ADS  Google Scholar 

  45. M. Kantner, M. Mittnenzweig, T. Koprucki, Phys. Rev. B 96, 205301 (2017). https://doi.org/10.1103/PhysRevB.96.205301

    Article  ADS  Google Scholar 

  46. M. Kantner, M. Mittnenzweig, T. Koprucki, Proc. SPIE 10526, 1052603 (2018). https://doi.org/10.1117/12.2289185

    Article  Google Scholar 

  47. M. Kantner, Proc. SPIE 10912, 109120U (2019). https://doi.org/10.1117/12.2515209

    Article  Google Scholar 

  48. H.P. Breuer, F. Petruccione, in The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  49. S. Selberherr, in Analysis and Simulation of Semiconductor Devices (Springer, Vienna, 1984). https://doi.org/10.1007/978-3-7091-8752-4

    Book  Google Scholar 

  50. A. Wojs, P. Hawrylak, S. Fafard, L. Jacak, Phys. Rev. B 54, 5604 (1996). https://doi.org/10.1103/physrevb.54.5604

    Article  ADS  Google Scholar 

  51. H. Haug, S.W. Koch, in Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapore, 2004). https://doi.org/10.1142/5394

  52. M. Kantner, U. Bandelow, T. Koprucki, J.H. Schulze, A. Strittmatter, H.J. Wünsche, IEEE Trans. Electron. Dev. 63, 2036 (2016). https://doi.org/10.1109/ted.2016.2538561

    Article  ADS  Google Scholar 

  53. R. Ferreira, G. Bastard, in Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots (Morgan & Claypool Publishers, San Rafael, CA, 2015), pp. 2053–2571. https://doi.org/10.1088/978-1-6817-4089-8

  54. V. Palankovski, R. Quay, in Analysis and Simulation of Heterostructure Devices. Series in Computational Microelectronics (Springer, Vienna, 2004). https://doi.org/10.1007/978-3-7091-0560-3

    Book  Google Scholar 

  55. M. Sotoodeh, A.H. Khalid, A.A. Rezazadeh, J. Appl. Phys. 87, 2890 (2000). https://doi.org/10.1063/1.372274

    Article  ADS  Google Scholar 

  56. S. Reitzenstein, IEEE, J. Sel. Top. Quantum Electron. 18, 1733 (2012). https://doi.org/10.1109/JSTQE.2012.2195159

    Article  ADS  Google Scholar 

  57. M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Reithmaier, F. Klopf, F. Schäfer, Phys. Rev. B 65, 195315 (2002). https://doi.org/10.1103/PhysRevB.65.195315

    Article  ADS  Google Scholar 

  58. Y.M. He, Y. He, Y.J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.Y. Lu, J.W. Pan, Nat. Nanotechnol. 8, 213 (2013). https://doi.org/10.1038/nnano.2012.262

    Article  ADS  Google Scholar 

  59. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, Phys. Rev. Lett. 101, 267404 (2008). https://doi.org/10.1103/PhysRevLett.101.267404

    Article  ADS  Google Scholar 

  60. M. Gschrey, F. Gericke, A. Schüßler, R. Schmidt, J.H. Schulze, T. Heindel, S. Rodt, A. Strittmatter, S. Reitzenstein, Appl. Phys. Lett. 102, 251113 (2013). https://doi.org/10.1063/1.4812343

    Article  ADS  Google Scholar 

  61. S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L.P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan, F. Jelezko, T. Ohshima, J. Isoya, T. Shinada, T. Tanii, Appl. Phys. Expr. 7(11), 115201 (2014). https://doi.org/10.7567/APEX.7.115201

    Article  ADS  Google Scholar 

  62. T. Schröder, M.E. Trusheim, M. Walsh, L. Li, J. Zheng, M. Schukraft, A. Sipahigil, R.E. Evans, D.D. Sukachev, C.T. Nguyen, J.L. Pacheco, R.M. Camacho, E.S. Bielejec, M.D. Lukin, D. Englund, Nat. Commun. 8, 15376 (2017). https://doi.org/10.1038/ncomms15376

    Article  ADS  Google Scholar 

  63. M. Radulaski, M. Widmann, M. Niethammer, J.L. Zhang, S.Y. Lee, T. Rendler, K.G. Lagoudakis, N.T. Son, E. Janzén, T. Ohshima, J. Wrachtrup, J. Vučković, Nano Lett. 17, 1782 (2017). https://doi.org/10.1021/acs.nanolett.6b05102

    Article  ADS  Google Scholar 

  64. Y. Zhou, Z. Mu, G. Adamo, S. Bauerdick, A. Rudzinski, I. Aharonovich, W.b. Gao, New J. Phys. 20(12), 125004 (2018). https://doi.org/10.1088/1367-2630/aaf2ac

    Article  ADS  Google Scholar 

  65. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoğlu, Science 308, 1158 (2005). https://doi.org/10.1126/science.1109815

    Article  ADS  Google Scholar 

  66. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Nature 445, 896 (2007). https://doi.org/10.1038/nature05586

    Article  ADS  Google Scholar 

  67. K.H. Lee, F.S.F. Brossard, M. Hadjipanayi, X. Xu, F. Waldermann, A.M. Green, D.N. Sharp, A.J. Turberfield, D.A. Williams, R.A. Taylor, Nanotechnology 19, 455307 (2008). https://doi.org/10.1088/0957-4484/19/45/455307

    Article  ADS  Google Scholar 

  68. S.M. Thon, M.T. Rakher, H. Kim, J. Gudat, W.T.M. Irvine, P.M. Petroff, D. Bouwmeester, Appl. Phys. Lett. 94, 111115 (2009). https://doi.org/10.1063/1.3103885

    Article  ADS  Google Scholar 

  69. M. Pfeiffer, K. Lindfors, P. Atkinson, A. Rastelli, O.G. Schmidt, H. Giessen, M. Lippitz, Phys. Stat. Sol. b 249, 678 (2012). https://doi.org/10.1002/pssb.201100788

    Article  ADS  Google Scholar 

  70. T. Kojima, K. Kojima, T. Asano, S. Noda, Appl. Phys. Lett. 102, 011110 (2013). https://doi.org/10.1063/1.4773882

    Article  ADS  Google Scholar 

  71. G. Nogues, Q. Merotto, G. Bachelier, E. Hye Lee, J. Dong Song, Appl. Phys. Lett. 102, 231112 (2013). https://doi.org/10.1063/1.4809831

    Article  ADS  Google Scholar 

  72. M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O.G. Schmidt, H. Giessen, M. Lippitz, Nano Lett. 14, 197 (2014). https://doi.org/10.1021/nl403730q

    Article  ADS  Google Scholar 

  73. M. Jeannin, P. Rueda-Fonseca, E. Bellet-Amalric, K. Kheng, G. Nogues, Nanotechnology 27, 185201 (2016). https://doi.org/10.1088/0957-4484/27/18/185201

    Article  ADS  Google Scholar 

  74. Y.M. He, J. Liu, S. Maier, M. Emmerling, S. Gerhardt, M. Davanco, K. Srinivasan, C. Schneider, S. Höfling, Optica 4, 802 (2017). https://doi.org/10.1364/OPTICA.4.000802

    Article  ADS  Google Scholar 

  75. M. Sartison, S.L. Portalupi, T. Gissibl, M. Jetter, H. Giessen, P. Michler, Sci. Rep. 7, 39916 (2017). https://doi.org/10.1038/srep39916

    Article  ADS  Google Scholar 

  76. I.E. Zadeh, A.W. Elshaari, K.D. Jöns, A. Fognini, D. Dalacu, P.J. Poole, M.E. Reimer, V. Zwiller, Nano Lett. 16, 2289 (2016). https://doi.org/10.1021/acs.nanolett.5b04709

    Article  ADS  Google Scholar 

  77. D. Cadeddu, J. Teissier, F.R. Braakman, N. Gregersen, P. Stepanov, J.M. Gérard, J. Claudon, R.J. Warburton, M. Poggio, M. Munsch, Appl. Phys. Lett. 108, 011112 (2016). https://doi.org/10.1063/1.4939264

    Article  ADS  Google Scholar 

  78. T. van der Sar, J. Hagemeier, W. Pfaff, E.C. Heeres, S.M. Thon, H. Kim, P.M. Petroff, T.H. Oosterkamp, D. Bouwmeester, R. Hanson, Appl. Phys. Lett. 98, 193103 (2011). https://doi.org/10.1063/1.3571437

    Article  ADS  Google Scholar 

  79. A. Muller, E.B. Flagg, M. Metcalfe, J. Lawall, G.S. Solomon, Appl. Phys. Lett. 95, 173101 (2009). https://doi.org/10.1063/1.3245311

    Article  ADS  Google Scholar 

  80. M. Gschrey, R. Schmidt, A. Kaganskiy, S. Rodt, S. Reitzenstein, J. Vac. Sci. Technol. B 32, 061601 (2014). https://doi.org/10.1116/1.4896671

    Article  Google Scholar 

  81. P. Schnauber, R. Schmidt, A. Kaganskiy, T. Heuser, M. Gschrey, S. Rodt, S. Reitzenstein, Nanotechnology 27, 195301 (2016). https://doi.org/10.1088/0957-4484/27/19/195301

    Article  ADS  Google Scholar 

  82. A. Kaganskiy, T. Heuser, R. Schmidt, S. Rodt, S. Reitzenstein, J. Vac. Sci. Technol. B 34, 061603 (2016). https://doi.org/10.1116/1.4965883

    Article  Google Scholar 

  83. M. Sartison, L. Engel, S. Kolatschek, F. Olbrich, C. Nawrath, S. Hepp, M. Jetter, P. Michler, S.L. Portalupi, Appl. Phys. Lett. 113, 032103 (2018). https://doi.org/10.1063/1.5038271

    Article  ADS  Google Scholar 

  84. K. Sawicki, F.K. Malinowski, K. Gałkowski, T. Jakubczyk, P. Kossacki, W. Pacuski, J. Suffczyński, Appl. Phys. Lett. 106, 012101 (2015). https://doi.org/10.1063/1.4905306

    Article  ADS  Google Scholar 

  85. F. Donatini, L.S. Dang, Nanotechnology 21, 375303 (2010). https://doi.org/10.1088/0957-4484/21/37/375303

    Article  Google Scholar 

  86. M. Gschrey, R. Schmidt, J.H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, J. Vac. Sci. Technol. B 33, 021603 (2015). https://doi.org/10.1116/1.4914914

    Article  Google Scholar 

  87. T. Heindel, S. Rodt, S. Reitzenstein, Single-photon sources based on deterministic quantum-dot microlenses (Springer International Publishing, Cham, 2017), pp. 199–232. https://doi.org/10.1007/978-3-319-56378-7_6

    Chapter  Google Scholar 

  88. A. Kaganskiy, M. Gschrey, A. Schlehahn, R. Schmidt, J.H. Schulze, T. Heindel, A. Strittmatter, S. Rodt, S. Reitzenstein, Rev. Sci. Instr. 86, 073903 (2015). https://doi.org/10.1063/1.4926995

    Article  ADS  Google Scholar 

  89. V. Zwiller, G. Björk, J. of Appl. Phys. 92, 660 (2002). https://doi.org/10.1063/1.1487913

    Article  ADS  Google Scholar 

  90. Y. Ma, G. Ballesteros, J.M. Zajac, J. Sun, B.D. Gerardot, Opt. Lett. 40, 2373 (2015). https://doi.org/10.1364/OL.40.002373

    Article  ADS  Google Scholar 

  91. S. Moehl, H. Zhao, B.D. Don, S. Wachter, H. Kalt, J. Appl. Phys. 93, 6265 (2003). https://doi.org/10.1063/1.1567035

    Article  ADS  Google Scholar 

  92. Y. Chen, M. Zopf, R. Keil, F. Ding, O.G. Schmidt, Nat. Commun. 9, 2994 (2018). https://doi.org/10.1038/s41467-018-05456-2

    Article  ADS  Google Scholar 

  93. P. Schnauber, A. Thoma, C.V. Heine, A. Schlehahn, L. Gantz, M. Gschrey, R. Schmidt, C. Hopfmann, B. Wohlfeil, J.H. Schulze, A. Strittmatter, T. Heindel, S. Rodt, U. Woggon, D. Gershoni, S. Reitzenstein, Technologies 4, 1 (2016). https://doi.org/10.3390/technologies4010001

    Article  Google Scholar 

  94. M. Munsch, N.S. Malik, E. Dupuy, A. Delga, J. Bleuse, J.M. Gérard, J. Claudon, N. Gregersen, J. Mørk, Phys. Rev. Lett. 110, 177402 (2013). https://doi.org/10.1103/PhysRevLett.110.177402

    Article  ADS  Google Scholar 

  95. J.H. Kim, Y.H. Ko, S.H. Gong, S.M. Ko, Y.H. Cho, Sci. Rep. 3, (2013). https://doi.org/10.1038/srep02150

  96. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, Nat. Commun. 4, 1425 (2013). https://doi.org/10.1038/ncomms2434

    Article  ADS  Google Scholar 

  97. J.H. Kim, T. Cai, C.J.K. Richardson, R.P. Leavitt, E. Waks, Optica 3, 577 (2016). https://doi.org/10.1364/OPTICA.3.000577

    Article  ADS  Google Scholar 

  98. X. Ding, Y. He, Z.C. Duan, N. Gregersen, M.C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 116, (2016). https://doi.org/10.1103/PhysRevLett.116.020401

  99. M. Pelton, C. Santori, J. Vučković, B. Zhang, G.S. Solomon, J. Plant, Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002). https://doi.org/10.1103/PhysRevLett.89.233602

    Article  ADS  Google Scholar 

  100. K. Madsen, S. Ates, J. Liu, A. Javadi, S. Albrecht, I. Yeo, S. Stobbe, P. Lodahl, Phys. Rev. B 90, 155303 (2014). https://doi.org/10.1103/PhysRevB.90.155303

  101. S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mørk, S. Höfling, C. Schneider, M. Kamp, Opt. Express 22, 8136 (2014). https://doi.org/10.1364/OE.22.008136

    Article  ADS  Google Scholar 

  102. S. Fischbach, A. Schlehahn, A. Thoma, N. Srocka, T. Gissibl, S. Ristok, S. Thiele, A. Kaganskiy, A. Strittmatter, T. Heindel, S. Rodt, A. Herkommer, H. Giessen, S. Reitzenstein, ACS Photon. 4, 1327 (2017). https://doi.org/10.1021/acsphotonics.7b00253

    Article  Google Scholar 

  103. A. Schlehahn, M. Gaafar, M. Vaupel, M. Gschrey, P. Schnauber, J.H. Schulze, S. Rodt, A. Strittmatter, W. Stolz, A. Rahimi-Iman, T. Heindel, M. Koch, S. Reitzenstein, Appl. Phys. Lett. 107, 041105 (2015). https://doi.org/10.1063/1.4927429

    Article  ADS  Google Scholar 

  104. M. Schmidt, M.V. Helversen, S. Fischbach, A. Kaganskiy, R. Schmidt, A. Schliwa, T. Heindel, S. Rodt, S. Reitzenstein, Opt. Mater. Express 10, 76 (2020). https://doi.org/10.1364/OME.10.000076

    Article  ADS  Google Scholar 

  105. H.J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998). https://doi.org/10.1103/PhysRevLett.81.5932

    Article  ADS  Google Scholar 

  106. J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, H. Weinfurter, Science 337, 72 (2012). https://doi.org/10.1126/science.1221856

    Article  ADS  Google Scholar 

  107. Z.L. Yuan, A.R. Dixon, J.F. Dynes, A.W. Sharpe, A.J. Shields, Appl. Phys. Lett. 92, 201104 (2008). https://doi.org/10.1063/1.2931070

    Article  ADS  Google Scholar 

  108. B. Heinen, T. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S.W. Koch, J.V. Moloney, M. Koch, W. Stolz, Electron. Lett. 48, 516 (2012). https://doi.org/10.1049/el.2012.0531

    Article  Google Scholar 

  109. M. Gaafar, C. Moller, M. Wichmann, B. Heinen, B. Kunert, A. Rahimi-Iman, W. Stolz, M. Koch, Electron. Lett. 50, 542 (2014). https://doi.org/10.1049/el.2014.0157

    Article  Google Scholar 

  110. A. Schlehahn, R. Schmidt, C. Hopfmann, J.H. Schulze, A. Strittmatter, T. Heindel, L. Gantz, E.R. Schmidgall, D. Gershoni, S. Reitzenstein, Appl. Phys. Lett. 108, 021104 (2016). https://doi.org/10.1063/1.4939658

    Article  ADS  Google Scholar 

  111. C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987). https://doi.org/10.1103/PhysRevLett.59.2044

    Article  ADS  Google Scholar 

  112. C. Santori, D. Fattal, J. Vučković, G.S. Solomon, Y. Yamamoto, Nature 419, 594 (2002). https://doi.org/10.1038/nature01086

    Article  ADS  Google Scholar 

  113. J. Bylander, I. Robert-Philip, I. Abram, Eur. Phys. J. D 22, 295 (2003). https://doi.org/10.1140/epjd/e2002-00236-6

    Article  ADS  Google Scholar 

  114. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U.W. Pohl, D. Bimberg, R. Steingrüber, Phys. Rev. B 61, 9944 (2000). https://doi.org/10.1103/physrevb.61.9944

    Article  ADS  Google Scholar 

  115. Y.M. Galperin, B.L. Altshuler, J. Bergli, D.V. Shantsev, Phys. Rev. Lett. 96, 097009 (2006). https://doi.org/10.1103/physrevlett.96.097009

    Article  ADS  Google Scholar 

  116. A. Delteil, Z. Sun, W.b. Gao, E. Togan, S. Faelt, A. Imamoglu, Nat. Phys. 12, 218 (2015). https://doi.org/10.1038/nphys3605

    Article  ADS  Google Scholar 

  117. R.B. Patel, A.J. Bennett, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Nat Photon 4, 632 (2010). https://doi.org/10.1038/nphoton.2010.161

    Article  ADS  Google Scholar 

  118. E.B. Flagg, A. Muller, S.V. Polyakov, A. Ling, A. Migdall, G.S. Solomon, Phys. Rev. Lett. 104, 137401 (2010). https://doi.org/10.1103/PhysRevLett.104.137401

    Article  ADS  Google Scholar 

  119. W. Gao, P. Fallahi, E. Togan, A. Delteil, Y. Chin, J. Miguel-Sanchez, A. Imamoğlu, Nat. Commun. 4, (2013). https://doi.org/10.1038/ncomms3744

  120. P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, Phys. Rev. B 89, 035313 (2014). https://doi.org/10.1103/PhysRevB.89.035313

    Article  ADS  Google Scholar 

  121. V. Giesz, S.L. Portalupi, T. Grange, C. Antón, L. De Santis, J. Demory, N. Somaschi, I. Sagnes, A. Lemaître, L. Lanco, A. Auffèves, P. Senellart, Phys. Rev. B 92, (2015). https://doi.org/10.1103/physrevb.92.161302

  122. A. Thoma, P. Schnauber, J. Böhm, M. Gschrey, J.H. Schulze, A. Strittmatter, S. Rodt, T. Heindel, S. Reitzenstein, Appl. Phys. Lett. 110, 011104 (2017). https://doi.org/10.1063/1.4973504

    Article  ADS  Google Scholar 

  123. A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, S. Reitzenstein, Sci. Rep. 8, 1340 (2018). https://doi.org/10.1038/s41598-017-19049-4

    Article  ADS  Google Scholar 

  124. N. Akopian, N.H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B.D. Gerardot, P.M. Petroff, Phys. Rev. Lett. 96, 130501 (2006). https://doi.org/10.1103/PhysRevLett.96.130501

    Article  ADS  Google Scholar 

  125. G. Callsen, A. Carmele, G. Hönig, C. Kindel, J. Brunnmeier, M.R. Wagner, E. Stock, J.S. Reparaz, A. Schliwa, S. Reitzenstein, A. Knorr, A. Hoffmann, S. Kako, Y. Arakawa, Phys. Rev. B 87(24), 245314 (2013). https://doi.org/10.1103/PhysRevB.87.245314

    Article  ADS  Google Scholar 

  126. S. Rodt, R. Heitz, A. Schliwa, R.L. Sellin, F. Guffarth, D. Bimberg, Phys. Rev. B 68, 035331 (2003). https://doi.org/10.1103/PhysRevB.68.035331

    Article  ADS  Google Scholar 

  127. R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U.W. Pohl, D. Bimberg, Phys. Rev. Lett. 95, 257402 (2005). https://doi.org/10.1103/PhysRevLett.95.257402

    Article  ADS  Google Scholar 

  128. T. Heindel, A. Thoma, M. von Helversen, M. Schmidt, A. Schlehahn, M. Gschrey, P. Schnauber, J.H. Schulze, A. Strittmatter, J. Beyer, S. Rodt, A. Carmele, A. Knorr, S. Reitzenstein, Nat. Commun. 8, 14870 (2017). https://doi.org/10.1038/ncomms14870

    Article  ADS  Google Scholar 

  129. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, D. Bimberg, Phys. Rev. B 71, 155325 (2005). https://doi.org/10.1103/PhysRevB.71.155325

    Article  ADS  Google Scholar 

  130. D.V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W.V. Schoenfeld, P.M. Petroff, Phys. Rev. Lett. 87, 257401 (2001). https://doi.org/10.1103/PhysRevLett.87.257401

    Article  ADS  Google Scholar 

  131. A. Kiraz, S. Fälth, C. Becher, B. Gayral, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoğlu, Phys. Rev. B 65, 161303 (2002). https://doi.org/10.1103/PhysRevB.65.161303

    Article  ADS  Google Scholar 

  132. J.K. Thompson, Science 313, 74 (2006). https://doi.org/10.1126/science.1127676

    Article  ADS  Google Scholar 

  133. M. Schmidt, M. von Helversen, M. López, F. Gericke, E. Schlottmann, T. Heindel, S. Kück, S. Reitzenstein, J. Beyer, J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1932-1

    Article  Google Scholar 

  134. S. Moroni, S. Varo, G. Juska, T. Chung, A. Gocalinska, E. Pelucchi, J. Cryst. Growth 506, 36 (2019). https://doi.org/10.1016/j.jcrysgro.2018.10.005

    Article  ADS  Google Scholar 

  135. J.S. Bell, Physics 1, 195 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  Google Scholar 

  136. B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Nature 526, 682 (2015). https://doi.org/10.1038/nature15759

    Article  ADS  Google Scholar 

  137. M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S.W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Phys. Rev. Lett. 115, 250401 (2015). https://doi.org/10.1103/PhysRevLett.115.250401

    Article  ADS  Google Scholar 

  138. L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S.W. Nam, Phys. Rev. Lett. 115, 250402 (2015). https://doi.org/10.1103/PhysRevLett.115.250402

    Article  ADS  Google Scholar 

  139. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  Google Scholar 

  140. R.M. Stevenson, R.J. Young, P. Atkinson, K. Cooper, D.A. Ritchie, A.J. Shields, Nature 439, 179 (2006). https://doi.org/10.1038/nature04446

    Article  ADS  Google Scholar 

  141. R. Hafenbrak, S.M. Ulrich, P. Michler, L. Wang, A. Rastelli, O.G. Schmidt, New J. Phys. 9, 315 (2007). https://doi.org/10.1088/1367-2630/9/9/315

    Article  ADS  Google Scholar 

  142. E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J.A. Töfflinger, A. Lochmann, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev, V.A. Haisler, D. Bimberg, Appl. Phys. Lett. 96, 093112 (2010). https://doi.org/10.1063/1.3337097

    Article  ADS  Google Scholar 

  143. M.A.M. Versteegh, M.E. Reimer, K.D. Jöns, D. Dalacu, P.J. Poole, A. Gulinatti, A. Giudice, V. Zwiller, Nat. Commun. 5, 5298 (2014). https://doi.org/10.1038/ncomms6298

    Article  ADS  Google Scholar 

  144. D. Huber, M. Reindl, Y. Huo, H. Huang, J.S. Wildmann, O.G. Schmidt, A. Rastelli, R. Trotta, Nat. Commun. 8, 15506 (2017). https://doi.org/10.1038/ncomms15506

    Article  ADS  Google Scholar 

  145. T. Kuroda, T. Mano, N. Ha, H. Nakajima, H. Kumano, B. Urbaszek, M. Jo, M. Abbarchi, Y. Sakuma, K. Sakoda, I. Suemune, X. Marie, T. Amand, Phys. Rev. B 88, 041306 (2013). https://doi.org/10.1103/PhysRevB.88.041306

    Article  ADS  Google Scholar 

  146. G. Juska, V. Dimastrodonato, L.O. Mereni, A. Gocalinska, E. Pelucchi, Nat. Photon. 7, 527 (2013). https://doi.org/10.1038/nphoton.2013.128

    Article  ADS  Google Scholar 

  147. J. Zhang, J.S. Wildmann, F. Ding, R. Trotta, Y. Huo, E. Zallo, D. Huber, A. Rastelli, and O. G. Schmidt, Nat. Commun. 6, 10067 (2015). https://doi.org/10.1038/ncomms10067

  148. A.J. Bennett, M.A. Pooley, R.M. Stevenson, M.B. Ward, R.B. Patel, A.B. de la Giroday, N. Skold, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Nat. Phys. 6, 947 (2010). https://doi.org/10.1038/nphys1780

    Article  ADS  Google Scholar 

  149. R.M. Stevenson, R.J. Young, P. See, D.G. Gevaux, K. Cooper, P. Atkinson, I. Farrer, D.A. Ritchie, A.J. Shields, Phys. Rev. B 73, 033306 (2006). https://doi.org/10.1103/PhysRevB.73.033306

    Article  ADS  Google Scholar 

  150. R.M. Stevenson, A.J. Hudson, A.J. Bennett, R.J. Young, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Phys. Rev. Lett. 101, 170501 (2008). https://doi.org/10.1103/PhysRevLett.101.170501

    Article  ADS  Google Scholar 

  151. S. Bounouar, C. de la Haye, M. Strauß, P. Schnauber, A. Thoma, M. Gschrey, J.H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, Appl. Phys. Lett. 112, 153107 (2018). https://doi.org/10.1063/1.5020242

    Article  ADS  Google Scholar 

  152. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, H. Ando, Phys. Rev. Lett. 87, 246401 (2001). https://doi.org/10.1103/PhysRevLett.87.246401

    Article  ADS  Google Scholar 

  153. H. Jayakumar, A. Predojević, T. Huber, T. Kauten, G.S. Solomon, G. Weihs, Phys. Rev. Lett. 110, 135505 (2013). https://doi.org/10.1103/physrevlett.110.135505

    Article  ADS  Google Scholar 

  154. X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Science 317, 929 (2007). https://doi.org/10.1126/science.1142979

    Article  ADS  Google Scholar 

  155. N.H. Bonadeo, Science 282, 1473 (1998). https://doi.org/10.1126/science.282.5393.1473

    Article  Google Scholar 

  156. M. Goeppert-Mayer, Ann. Phys. 273–295 (1931). https://doi.org/10.1002/andp.19314010303

    Article  ADS  Google Scholar 

  157. S. Bounouar, M. Strauß, A. Carmele, P. Schnauber, A. Thoma, M. Gschrey, J.H. Schulze, A. Strittmatter, S. Rodt, A. Knorr, S. Reitzenstein, Phys. Rev. Lett. 118, 233601 (2017). https://doi.org/10.1103/PhysRevLett.118.233601

    Article  ADS  Google Scholar 

  158. T. Farrow, P. See, A.J. Bennett, M.B. Ward, P. Atkinson, K. Cooper, D.J.P. Ellis, D.C. Unitt, D.A. Ritchie, A.J. Shields, Nanotechnology 19, 345401 (2008). https://doi.org/10.1088/0957-4484/19/34/345401

    Article  Google Scholar 

  159. W. Heller, U. Bockelmann, G. Abstreiter, Phys. Rev. B 57, 6270 (1998). https://doi.org/10.1103/PhysRevB.57.6270

    Article  ADS  Google Scholar 

  160. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, A. Forchel, Opt. Express 16, 15006 (2008). https://doi.org/10.1364/OE.16.015006

    Article  ADS  Google Scholar 

  161. F. Ding, R. Singh, J.D. Plumhof, T. Zander, V. Křápek, Y.H. Chen, M. Benyoucef, V. Zwiller, K. Dörr, G. Bester, A. Rastelli, O.G. Schmidt, Phys. Rev. Lett. 104, 067405 (2010). https://doi.org/10.1103/PhysRevLett.104.067405

    Article  ADS  Google Scholar 

  162. R. Trotta, P. Atkinson, J.D. Plumhof, E. Zallo, R.O. Rezaev, S. Kumar, S. Baunack, J.R. Schröter, A. Rastelli, O.G. Schmidt, Adv. Mat. 24, 2668 (2012). https://doi.org/10.1002/adma.201200537

    Article  Google Scholar 

  163. R. Trotta, J. Martń-Sánchez, J.S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, A. Rastelli, Nat. Commun. 7, 10375 (2016). https://doi.org/10.1038/ncomms10375

    Article  ADS  Google Scholar 

  164. S. Fischbach, A. Kaganskiy, E.B.Y. Tauscher, F. Gericke, A. Thoma, R. Schmidt, A. Strittmatter, T. Heindel, S. Rodt, S. Reitzenstein, Appl. Phys. Lett. 111, 011106 (2017). https://doi.org/10.1063/1.4991389

    Article  ADS  Google Scholar 

  165. T. Heindel, C.A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, New J. Phys. 14, 083001 (2012). https://doi.org/10.1088/1367-2630/14/8/083001

    Article  ADS  Google Scholar 

  166. S.K. Liao, W.Q. Cai, W.Y. Liu, L. Zhang, Y. Li, J.G. Ren, J. Yin, Q. Shen, Y. Cao, Z.P. Li, F.Z. Li, X.W. Chen, L.H. Sun, J.J. Jia, J.C. Wu, X.J. Jiang, J.F. Wang, Y.M. Huang, Q. Wang, Y.L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.A. Chen, N.L. Liu, X.B. Wang, Z.C. Zhu, C.Y. Lu, R. Shu, C.Z. Peng, J.Y. Wang, J.W. Pan, Nature 549, 43 (2017). https://doi.org/10.1038/nature23655

    Article  ADS  Google Scholar 

  167. P.M. Intallura, M.B. Ward, O.Z. Karimov, Z.L. Yuan, P. See, A.J. Shields, P. Atkinson, D.A. Ritchie, Appl. Phys. Lett. 91, 161103 (2007). https://doi.org/10.1063/1.2799756

    Article  ADS  Google Scholar 

  168. L. Wang, A. Rastelli, O.G. Schmidt, J. Appl. Phys. 100, 064313 (2006). https://doi.org/10.1063/1.2349432

    Article  ADS  Google Scholar 

  169. K. Nishi, H. Saito, S. Sugou, J.S. Lee, Appl. Phys. Lett. 74, 1111 (1999). https://doi.org/10.1063/1.123459

    Article  ADS  Google Scholar 

  170. J. Bloch, J. Shah, W.S. Hobson, J. Lopata, S.N.G. Chu, Appl. Phys. Lett. 75, 2199 (1999). https://doi.org/10.1063/1.124963

    Article  ADS  Google Scholar 

  171. V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, A.Y. Egorov, A.V. Lunev, B.V. Volovik, I.L. Krestnikov, Y.G. Musikhin, N.A. Bert, P.S. Kop’ev, Z.I. Alferov, N.N. Ledentsov, D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999). https://doi.org/10.1063/1.124023

    Article  ADS  Google Scholar 

  172. M. Paul, F. Olbrich, J. Höschele, S. Schreier, J. Kettler, S.L. Portalupi, M. Jetter, P. Michler, Appl. Phys. Lett. 111, 033102 (2017). https://doi.org/10.1063/1.4993935

    Article  ADS  Google Scholar 

  173. M. Yacob, J.P. Reithmaier, M. Benyoucef, Appl. Phys. Lett. 104, 022113 (2014). https://doi.org/10.1063/1.4861940

    Article  ADS  Google Scholar 

  174. A. Kors, J.P. Reithmaier, M. Benyoucef, Appl. Phys. Lett. 112, 172102 (2018). https://doi.org/10.1063/1.5023184

    Article  ADS  Google Scholar 

  175. Z.S. Chen, B. Ma, X.J. Shang, H.Q. Ni, J.L. Wang, Z.C. Niu, Nanoscale Res. Lett. 12, 378 (2017). https://doi.org/10.1186/s11671-017-2153-2

    Article  ADS  Google Scholar 

  176. J.-H. Kim, T. Cai, C. J. K. Richardson, R. P. Leavitt, and E. Waks, Optica. 3, 577 (2016). https://doi.org/10.1364/OPTICA.3.000577

    Article  ADS  Google Scholar 

  177. T. Usuki, Y. Sakuma, S. Hirose, K. Takemoto, N. Yokoyama, T. Miyazawa, M. Takatsu, Y. Arakawa, J. Phys.: Conf. Ser. 38, 140 (2006). https://doi.org/10.1088/1742-6596/38/1/034

    Article  ADS  Google Scholar 

  178. Ł. Dusanowski, P. Holewa, A. Maryński, A. Musiał, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, J. Misiewicz, S. Reitzenstein, G. Sęk, Opt. Express 25, 31122 (2017). https://doi.org/10.1364/OE.25.031122

    Article  ADS  Google Scholar 

  179. A. Schlehahn, L. Krüger, M. Gschrey, J.H. Schulze, S. Rodt, A. Strittmatter, T. Heindel, S. Reitzenstein, Rev. Sci. Instr. 86, 013113 (2015). https://doi.org/10.1063/1.4906548

    Article  ADS  Google Scholar 

  180. P. Michler, A. Imamoğlu, M.D. Mason, P.J. Carson, G.F. Strouse, S.K. Buratto, Nature 406, 968 (2000). https://doi.org/10.1038/35023100

    Article  ADS  Google Scholar 

  181. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000). https://doi.org/10.1103/PhysRevLett.85.290

    Article  ADS  Google Scholar 

  182. B. Lounis, W.E. Moerner, Nature 407, 491 (2000). https://doi.org/10.1038/35035032

    Article  ADS  Google Scholar 

  183. M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Nano Lett. 14, 982 (2014). https://doi.org/10.1021/nl404400d

    Article  ADS  Google Scholar 

  184. S. Deshpande, T. Frost, A. Hazari, P. Bhattacharya, Appl. Phys. Lett. 105, 141109 (2014). https://doi.org/10.1063/1.4897640

    Article  ADS  Google Scholar 

  185. S. Ates, L. Sapienza, M. Davanco, A. Badolato, K. Srinivasan, IEEE, J. Sel. Top. Quantum Electron. 18, 1711 (2012). https://doi.org/10.1109/JSTQE.2012.2193877

    Article  ADS  Google Scholar 

  186. A. Veprik, S. Riabzev, G. Vilenchik, N. Pundak, Cryogenics 45, 117 (2005). https://doi.org/10.1016/j.cryogenics.2004.05.007

    Article  ADS  Google Scholar 

  187. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N.J. Russell, J.W. Silverstone, P.J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G.D. Marshall, M.G. Thompson, J.C.F. Matthews, T. Hashimoto, J.L. O’Brien, A. Laing, Science 349, 711 (2015). https://doi.org/10.1126/science.aab3642

    Article  MathSciNet  Google Scholar 

  188. G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vuckovic, R. Gross, J.J. Finley, Nano Lett. 15, 5208 (2015). https://doi.org/10.1021/acs.nanolett.5b01444

    Article  ADS  Google Scholar 

  189. C.P. Dietrich, A. Fiore, M.G. Thompson, M. Kamp, S. Höfling, Laser Photon. Rev. 10, 870 (2016). https://doi.org/10.1002/lpor.201500321

    Article  ADS  Google Scholar 

  190. P. Lodahl, Quantum Science and Technology 3, 013001 (2017). https://doi.org/10.1088/2058-9565/aa91bb

    Article  ADS  Google Scholar 

  191. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Science 320, 646 (2008). https://doi.org/10.1126/science.1155441

    Article  ADS  Google Scholar 

  192. E. Murray, D.J.P. Ellis, T. Meany, F.F. Floether, J.P. Lee, J.P. Griffiths, G.A.C. Jones, I. Farrer, D.A. Ritchie, A.J. Bennett, A.J. Shields, Appl. Phys. Lett. 107, 171108 (2015). https://doi.org/10.1063/1.4935029

    Article  ADS  Google Scholar 

  193. L.B. Soldano, E.C.M. Pennings, J. Light. Technol. 13, 615 (1995). https://doi.org/10.1109/50.372474

    Article  ADS  Google Scholar 

  194. N. Prtljaga, R.J. Coles, J. O’Hara, B. Royall, E. Clarke, A.M. Fox, M.S. Skolnick, Appl. Phys. Lett. 104, 231107 (2014). https://doi.org/10.1063/1.4883374

    Article  ADS  Google Scholar 

  195. K.D. Jöns, U. Rengstl, M. Oster, F. Hargart, M. Heldmaier, S. Bounouar, S.M. Ulrich, M. Jetter, P. Michler, J. Phys. D 48, 085101 (2015). https://doi.org/10.1088/0022-3727/48/8/085101

    Article  ADS  Google Scholar 

  196. A. Musiał, C. Hopfmann, T. Heindel, C. Gies, M. Florian, H.A.M. Leymann, A. Foerster, C. Schneider, F. Jahnke, S. Höfling, M. Kamp, S. Reitzenstein, Phys. Rev. B 91(20), 205310 (2015). https://doi.org/10.1103/PhysRevB.91.205310

    Article  ADS  Google Scholar 

  197. U. Rengstl, M. Schwartz, T. Herzog, F. Hargart, M. Paul, S.L. Portalupi, M. Jetter, P. Michler, Appl. Phys. Lett. 107, 021101 (2015). https://doi.org/10.1063/1.4926729

    Article  ADS  Google Scholar 

  198. T. Aichele, V. Zwiller, O. Benson, New J. Phys. 6, 90 (2004). https://doi.org/10.1088/1367-2630/6/1/090

    Article  ADS  Google Scholar 

  199. M.J. Stanley, C. Matthiesen, J. Hansom, C. Le Gall, C.H.H. Schulte, E. Clarke, M. Atatüre, Phys. Rev. B 90, 195305 (2014). https://doi.org/10.1103/physrevb.90.195305

  200. A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, D. Bimberg, Phys. Rev. B 80, 161307 (2009). https://doi.org/10.1103/PhysRevB.80.161307

    Article  ADS  Google Scholar 

  201. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Phys. Rev. Lett. 98, (2007). https://doi.org/10.1103/physrevlett.98.190503

  202. A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706 (2009). https://doi.org/10.1038/nphoton.2009.231

    Article  ADS  Google Scholar 

  203. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Rev. Mod. Phys. 79, 135 (2007). https://doi.org/10.1103/RevModPhys.79.135

    Article  ADS  Google Scholar 

  204. N. Akopian, L. Wang, A. Rastelli, O.G. Schmidt, V. Zwiller, Nat. Photon. 5, 230 (2011). https://doi.org/10.1038/nphoton.2011.16

    Article  ADS  Google Scholar 

  205. M. Davanco, J. Liu, L. Sapienza, C.Z. Zhang, J.V. De Miranda Cardoso, V. Verma, R. Mirin, S.W. Nam, L. Liu, K. Srinivasan, Nat. Commun. 8, 889 (2017). https://doi.org/10.1038/s41467-017-00987-6

  206. A.W. Elshaari, I.E. Zadeh, A. Fognini, M.E. Reimer, D. Dalacu, P.J. Poole, V. Zwiller, K.D. Jöns, Nat. Commun. 8, 379 (2017). https://doi.org/10.1038/s41467-017-00486-8

    Article  ADS  Google Scholar 

  207. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G.A. Steele, A. Castellanos-Gomez, H.S.J. van der Zant, S. Michaelis de Vasconcellos, R. Bratschitsch, Optica 2, 347 (2015). https://doi.org/10.1364/optica.2.000347

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Many people contributed to this work including (in alphabetical order) A. Carmele, S. Fischbach, L. Gantz, D. Gershoni, J. Große, M. Gschrey, C. Heine, L. Heindel, M. von Helversen, T. Heuser, T. Höhne, C. Hopfmann, A. Kaganskiy, A. Knorr, A. Musiał, D. Quandt, J. Schall, C. Scharfenorth, A. Schlehahn, E. Schmidgall, F. Schmidt, M. Schmidt, R. Schmidt, P. Schnauber, J.-H. Schulze, M. Seifried, G. Sek, N. Srocka, M. Strauß, A. Strittmatter, A. Thoma, B. Wohlfeil, U. Woggon, and J. Wolters. We are grateful for their support and skills.

The research leading to these results has received funding from the German Research Foundation via CRC 787, Re2974/8-1 and Re2974/12-1, from the European Research Council under the European Union’s Seventh Framework ERC Grant Agreement No. 615613, the German Federal Ministry of Education and Research (BMBF) through the VIP-project QSOURCE (Grant No. 03V0630), from the European Regional Development Fund (EFRE) of the European Union in the framework of the programme to promote research, innovation, and technologies (Pro FIT) via the project FI-SEQUR (Grant No. 10160387), from the German-Israeli-Foundation for Scientific Research and Development, Grant-No.: 1148-77.14/2011, and from the project EMPIR 14IND05 MIQC2 (the EMPIR initiative is co-funded by the European Union’s Horizon 2020 research and innovation programme and the EMPIR Participating States).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Rodt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodt, S. et al. (2020). Deterministic Quantum Devices for Optical Quantum Communication. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_8

Download citation

Publish with us

Policies and ethics